Description#
On a 2D plane, there are n
points with integer coordinates points[i] = [xi, yi]
. Return the minimum time in seconds to visit all the points in the order given by points
.
You can move according to these rules:
- In
1
second, you can either:<ul>
<li>move vertically by one unit,</li>
<li>move horizontally by one unit, or</li>
<li>move diagonally <code>sqrt(2)</code> units (in other words, move one unit vertically then one unit horizontally in <code>1</code> second).</li>
</ul>
</li>
<li>You have to visit the points in the same order as they appear in the array.</li>
<li>You are allowed to pass through points that appear later in the order, but these do not count as visits.</li>
Example 1:
Input: points = [[1,1],[3,4],[-1,0]]
Output: 7
Explanation: One optimal path is [1,1] -> [2,2] -> [3,3] -> [3,4] -> [2,3] -> [1,2] -> [0,1] -> [-1,0]
Time from [1,1] to [3,4] = 3 seconds
Time from [3,4] to [-1,0] = 4 seconds
Total time = 7 seconds
Example 2:
Input: points = [[3,2],[-2,2]]
Output: 5
Constraints:
points.length == n
1 <= n <= 100
points[i].length == 2
-1000 <= points[i][0], points[i][1] <= 1000
Solutions#
Solution 1: Simulation#
For two points $p1=(x_1, y_1)$ and $p2=(x_2, y_2)$, the distances moved in the x-axis and y-axis are $dx = |x_1 - x_2|$ and $dy = |y_1 - y_2|$ respectively.
If $dx \ge dy$, move along the diagonal for $dy$ steps, then move horizontally for $dx - dy$ steps. If $dx < dy$, move along the diagonal for $dx$ steps, then move vertically for $dy - dx$ steps. Therefore, the minimum distance between the two points is $max(dx, dy)$.
We can iterate through all pairs of points, calculate the minimum distance between each pair of points, and then sum them up.
The time complexity is $O(n)$, where $n$ is the number of points. The space complexity is $O(1)$.
1
2
3
4
5
| class Solution:
def minTimeToVisitAllPoints(self, points: List[List[int]]) -> int:
return sum(
max(abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) for p1, p2 in pairwise(points)
)
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public int minTimeToVisitAllPoints(int[][] points) {
int ans = 0;
for (int i = 1; i < points.length; ++i) {
int dx = Math.abs(points[i][0] - points[i - 1][0]);
int dy = Math.abs(points[i][1] - points[i - 1][1]);
ans += Math.max(dx, dy);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution {
public:
int minTimeToVisitAllPoints(vector<vector<int>>& points) {
int ans = 0;
for (int i = 1; i < points.size(); ++i) {
int dx = abs(points[i][0] - points[i - 1][0]);
int dy = abs(points[i][1] - points[i - 1][1]);
ans += max(dx, dy);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| func minTimeToVisitAllPoints(points [][]int) (ans int) {
for i, p := range points[1:] {
dx := abs(p[0] - points[i][0])
dy := abs(p[1] - points[i][1])
ans += max(dx, dy)
}
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
1
2
3
4
5
6
7
8
9
| function minTimeToVisitAllPoints(points: number[][]): number {
let ans = 0;
for (let i = 1; i < points.length; i++) {
let dx = Math.abs(points[i][0] - points[i - 1][0]),
dy = Math.abs(points[i][1] - points[i - 1][1]);
ans += Math.max(dx, dy);
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| impl Solution {
pub fn min_time_to_visit_all_points(points: Vec<Vec<i32>>) -> i32 {
let n = points.len();
let mut ans = 0;
for i in 1..n {
let x = (points[i - 1][0] - points[i][0]).abs();
let y = (points[i - 1][1] - points[i][1]).abs();
ans += x.max(y);
}
ans
}
}
|
1
2
3
4
5
6
7
8
9
10
11
| #define max(a, b) (((a) > (b)) ? (a) : (b))
int minTimeToVisitAllPoints(int** points, int pointsSize, int* pointsColSize) {
int ans = 0;
for (int i = 1; i < pointsSize; i++) {
int x = abs(points[i - 1][0] - points[i][0]);
int y = abs(points[i - 1][1] - points[i][1]);
ans += max(x, y);
}
return ans;
}
|