Description#
Given two strings s
and t
of lengths m
and n
respectively, return the minimum window substring of s
such that every character in t
(including duplicates) is included in the window. If there is no such substring, return the empty string ""
.
The testcases will be generated such that the answer is unique.
Example 1:
Input: s = "ADOBECODEBANC", t = "ABC"
Output: "BANC"
Explanation: The minimum window substring "BANC" includes 'A', 'B', and 'C' from string t.
Example 2:
Input: s = "a", t = "a"
Output: "a"
Explanation: The entire string s is the minimum window.
Example 3:
Input: s = "a", t = "aa"
Output: ""
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
Constraints:
m == s.length
n == t.length
1 <= m, n <= 105
s
and t
consist of uppercase and lowercase English letters.
Follow up: Could you find an algorithm that runs in O(m + n)
time?
Solutions#
Solution 1: Counting + Two Pointers#
We use a hash table or array $need$ to count the number of occurrences of each character in string $t$, and another hash table or array $window$ to count the number of occurrences of each character in the sliding window. In addition, we define two pointers $j$ and $i$ to point to the left and right boundaries of the window, respectively. The variable $cnt$ represents how many characters in $t$ are already included in the window. The variables $k$ and $mi$ represent the starting position and length of the minimum covering substring, respectively.
We traverse the string $s$ from left to right. For the currently traversed character $s[i]$:
We add it to the window, i.e., $window[s[i]] = window[s[i]] + 1$. If $need[s[i]] \geq window[s[i]]$ at this time, it means that $s[i]$ is a “necessary character”, so we increment $cnt$ by one. If $cnt$ equals the length of $t$, it means that all characters in $t$ are already included in the window at this time, so we can try to update the starting position and length of the minimum covering substring. If $i - j + 1 \lt mi$, it means that the substring represented by the current window is shorter, so we update $mi = i - j + 1$ and $k = j$. Then, we try to move the left boundary $j$. If $need[s[j]] \geq window[s[j]]$ at this time, it means that $s[j]$ is a “necessary character”. When moving the left boundary, the character $s[j]$ will be removed from the window, so we need to decrement $cnt$ by one, then update $window[s[j]] = window[s[j]] - 1$, and move $j$ one step to the right. If $cnt$ does not equal the length of $t$, it means that all characters in $t$ are not yet included in the window at this time, so we don’t need to move the left boundary, just move $i$ one step to the right and continue to traverse.
After the traversal, if the minimum covering substring is not found, return an empty string, otherwise return $s[k:k+mi]$.
The time complexity is $O(m + n)$, and the space complexity is $O(C)$. Here, $m$ and $n$ are the lengths of strings $s$ and $t$ respectively; and $C$ is the size of the character set, in this problem $C = 128$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution:
def minWindow(self, s: str, t: str) -> str:
need = Counter(t)
window = Counter()
cnt, j, k, mi = 0, 0, -1, inf
for i, c in enumerate(s):
window[c] += 1
if need[c] >= window[c]:
cnt += 1
while cnt == len(t):
if i - j + 1 < mi:
mi = i - j + 1
k = j
if need[s[j]] >= window[s[j]]:
cnt -= 1
window[s[j]] -= 1
j += 1
return '' if k < 0 else s[k : k + mi]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| class Solution {
public String minWindow(String s, String t) {
int[] need = new int[128];
int[] window = new int[128];
int m = s.length(), n = t.length();
for (int i = 0; i < n; ++i) {
++need[t.charAt(i)];
}
int cnt = 0, j = 0, k = -1, mi = 1 << 30;
for (int i = 0; i < m; ++i) {
++window[s.charAt(i)];
if (need[s.charAt(i)] >= window[s.charAt(i)]) {
++cnt;
}
while (cnt == n) {
if (i - j + 1 < mi) {
mi = i - j + 1;
k = j;
}
if (need[s.charAt(j)] >= window[s.charAt(j)]) {
--cnt;
}
--window[s.charAt(j++)];
}
}
return k < 0 ? "" : s.substring(k, k + mi);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| class Solution {
public:
string minWindow(string s, string t) {
int need[128]{};
int window[128]{};
int m = s.size(), n = t.size();
for (char& c : t) {
++need[c];
}
int cnt = 0, j = 0, k = -1, mi = 1 << 30;
for (int i = 0; i < m; ++i) {
++window[s[i]];
if (need[s[i]] >= window[s[i]]) {
++cnt;
}
while (cnt == n) {
if (i - j + 1 < mi) {
mi = i - j + 1;
k = j;
}
if (need[s[j]] >= window[s[j]]) {
--cnt;
}
--window[s[j++]];
}
}
return k < 0 ? "" : s.substr(k, mi);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| func minWindow(s string, t string) string {
need := [128]int{}
window := [128]int{}
for _, c := range t {
need[c]++
}
cnt, j, k, mi := 0, 0, -1, 1<<30
for i, c := range s {
window[c]++
if need[c] >= window[c] {
cnt++
}
for cnt == len(t) {
if i-j+1 < mi {
mi = i - j + 1
k = j
}
if need[s[j]] >= window[s[j]] {
cnt--
}
window[s[j]]--
j++
}
}
if k < 0 {
return ""
}
return s[k : k+mi]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| function minWindow(s: string, t: string): string {
const need: number[] = new Array(128).fill(0);
const window: number[] = new Array(128).fill(0);
for (const c of t) {
++need[c.charCodeAt(0)];
}
let cnt = 0;
let j = 0;
let k = -1;
let mi = 1 << 30;
for (let i = 0; i < s.length; ++i) {
++window[s.charCodeAt(i)];
if (need[s.charCodeAt(i)] >= window[s.charCodeAt(i)]) {
++cnt;
}
while (cnt === t.length) {
if (i - j + 1 < mi) {
mi = i - j + 1;
k = j;
}
if (need[s.charCodeAt(j)] >= window[s.charCodeAt(j)]) {
--cnt;
}
--window[s.charCodeAt(j++)];
}
}
return k < 0 ? '' : s.slice(k, k + mi);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| impl Solution {
pub fn min_window(s: String, t: String) -> String {
let (mut need, mut window, mut cnt) = ([0; 256], [0; 256], 0);
for c in t.chars() {
need[c as usize] += 1;
}
let (mut j, mut k, mut mi) = (0, -1, 1 << 31);
for (i, c) in s.chars().enumerate() {
window[c as usize] += 1;
if need[c as usize] >= window[c as usize] {
cnt += 1;
}
while cnt == t.len() {
if i - j + 1 < mi {
k = j as i32;
mi = i - j + 1;
}
let l = s.chars().nth(j).unwrap() as usize;
if need[l] >= window[l] {
cnt -= 1;
}
window[l] -= 1;
j += 1;
}
}
if k < 0 {
return "".to_string();
}
let k = k as usize;
s[k..k + mi].to_string()
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| public class Solution {
public string MinWindow(string s, string t) {
int[] need = new int[128];
int[] window = new int[128];
foreach (var c in t) {
++need[c];
}
int cnt = 0, j = 0, k = -1, mi = 1 << 30;
for (int i = 0; i < s.Length; ++i) {
++window[s[i]];
if (need[s[i]] >= window[s[i]]) {
++cnt;
}
while (cnt == t.Length) {
if (i - j + 1 < mi) {
mi = i - j + 1;
k = j;
}
if (need[s[j]] >= window[s[j]]) {
--cnt;
}
--window[s[j++]];
}
}
return k < 0 ? "" : s.Substring(k, mi);
}
}
|