Description#
You are given four integers minLength
, maxLength
, oneGroup
and zeroGroup
.
A binary string is good if it satisfies the following conditions:
- The length of the string is in the range
[minLength, maxLength]
. - The size of each block of consecutive
1
's is a multiple of oneGroup
.- For example in a binary string
00110111100
sizes of each block of consecutive ones are [2,4]
.
- The size of each block of consecutive
0
's is a multiple of zeroGroup
.- For example, in a binary string
00110111100
sizes of each block of consecutive zeros are [2,1,2]
.
Return the number of good binary strings. Since the answer may be too large, return it modulo 109 + 7
.
Note that 0
is considered a multiple of all the numbers.
Example 1:
Input: minLength = 2, maxLength = 3, oneGroup = 1, zeroGroup = 2
Output: 5
Explanation: There are 5 good binary strings in this example: "00", "11", "001", "100", and "111".
It can be proven that there are only 5 good strings satisfying all conditions.
Example 2:
Input: minLength = 4, maxLength = 4, oneGroup = 4, zeroGroup = 3
Output: 1
Explanation: There is only 1 good binary string in this example: "1111".
It can be proven that there is only 1 good string satisfying all conditions.
Constraints:
1 <= minLength <= maxLength <= 105
1 <= oneGroup, zeroGroup <= maxLength
Solutions#
Solution 1: Dynamic Programming#
We define $f[i]$ as the number of strings of length $i$ that meet the condition. The state transition equation is:
$$
f[i] = \begin{cases}
1 & i = 0 \
f[i - oneGroup] + f[i - zeroGroup] & i \geq 1
\end{cases}
$$
The final answer is $f[minLength] + f[minLength + 1] + \cdots + f[maxLength]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n=maxLength$.
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution:
def goodBinaryStrings(
self, minLength: int, maxLength: int, oneGroup: int, zeroGroup: int
) -> int:
mod = 10**9 + 7
f = [1] + [0] * maxLength
for i in range(1, len(f)):
if i - oneGroup >= 0:
f[i] += f[i - oneGroup]
if i - zeroGroup >= 0:
f[i] += f[i - zeroGroup]
f[i] %= mod
return sum(f[minLength:]) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
final int mod = (int) 1e9 + 7;
int[] f = new int[maxLength + 1];
f[0] = 1;
for (int i = 1; i <= maxLength; ++i) {
if (i - oneGroup >= 0) {
f[i] = (f[i] + f[i - oneGroup]) % mod;
}
if (i - zeroGroup >= 0) {
f[i] = (f[i] + f[i - zeroGroup]) % mod;
}
}
int ans = 0;
for (int i = minLength; i <= maxLength; ++i) {
ans = (ans + f[i]) % mod;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| class Solution {
public:
int goodBinaryStrings(int minLength, int maxLength, int oneGroup, int zeroGroup) {
const int mod = 1e9 + 7;
int f[maxLength + 1];
memset(f, 0, sizeof f);
f[0] = 1;
for (int i = 1; i <= maxLength; ++i) {
if (i - oneGroup >= 0) {
f[i] = (f[i] + f[i - oneGroup]) % mod;
}
if (i - zeroGroup >= 0) {
f[i] = (f[i] + f[i - zeroGroup]) % mod;
}
}
int ans = 0;
for (int i = minLength; i <= maxLength; ++i) {
ans = (ans + f[i]) % mod;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| func goodBinaryStrings(minLength int, maxLength int, oneGroup int, zeroGroup int) (ans int) {
const mod int = 1e9 + 7
f := make([]int, maxLength+1)
f[0] = 1
for i := 1; i <= maxLength; i++ {
if i-oneGroup >= 0 {
f[i] += f[i-oneGroup]
}
if i-zeroGroup >= 0 {
f[i] += f[i-zeroGroup]
}
f[i] %= mod
}
for _, v := range f[minLength:] {
ans = (ans + v) % mod
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| function goodBinaryStrings(
minLength: number,
maxLength: number,
oneGroup: number,
zeroGroup: number,
): number {
const mod = 10 ** 9 + 7;
const f: number[] = Array(maxLength + 1).fill(0);
f[0] = 1;
for (let i = 1; i <= maxLength; ++i) {
if (i >= oneGroup) {
f[i] += f[i - oneGroup];
}
if (i >= zeroGroup) {
f[i] += f[i - zeroGroup];
}
f[i] %= mod;
}
return f.slice(minLength).reduce((a, b) => a + b, 0) % mod;
}
|