Description#
You are given an array nums
consisting of positive integers and an integer k
.
Partition the array into two ordered groups such that each element is in exactly one group. A partition is called great if the sum of elements of each group is greater than or equal to k
.
Return the number of distinct great partitions. Since the answer may be too large, return it modulo 109 + 7
.
Two partitions are considered distinct if some element nums[i]
is in different groups in the two partitions.
Example 1:
Input: nums = [1,2,3,4], k = 4
Output: 6
Explanation: The great partitions are: ([1,2,3], [4]), ([1,3], [2,4]), ([1,4], [2,3]), ([2,3], [1,4]), ([2,4], [1,3]) and ([4], [1,2,3]).
Example 2:
Input: nums = [3,3,3], k = 4
Output: 0
Explanation: There are no great partitions for this array.
Example 3:
Input: nums = [6,6], k = 2
Output: 2
Explanation: We can either put nums[0] in the first partition or in the second partition.
The great partitions will be ([6], [6]) and ([6], [6]).
Constraints:
1 <= nums.length, k <= 1000
1 <= nums[i] <= 109
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution:
def countPartitions(self, nums: List[int], k: int) -> int:
if sum(nums) < k * 2:
return 0
mod = 10**9 + 7
n = len(nums)
f = [[0] * k for _ in range(n + 1)]
f[0][0] = 1
ans = 1
for i in range(1, n + 1):
ans = ans * 2 % mod
for j in range(k):
f[i][j] = f[i - 1][j]
if j >= nums[i - 1]:
f[i][j] = (f[i][j] + f[i - 1][j - nums[i - 1]]) % mod
return (ans - sum(f[-1]) * 2 + mod) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
| class Solution {
private static final int MOD = (int) 1e9 + 7;
public int countPartitions(int[] nums, int k) {
long s = 0;
for (int v : nums) {
s += v;
}
if (s < k * 2) {
return 0;
}
int n = nums.length;
long[][] f = new long[n + 1][k];
f[0][0] = 1;
long ans = 1;
for (int i = 1; i <= n; ++i) {
int v = nums[i - 1];
ans = ans * 2 % MOD;
for (int j = 0; j < k; ++j) {
f[i][j] = f[i - 1][j];
if (j >= v) {
f[i][j] = (f[i][j] + f[i - 1][j - v]) % MOD;
}
}
}
for (int j = 0; j < k; ++j) {
ans = (ans - f[n][j] * 2 % MOD + MOD) % MOD;
}
return (int) ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| class Solution {
public:
const int mod = 1e9 + 7;
int countPartitions(vector<int>& nums, int k) {
long s = accumulate(nums.begin(), nums.end(), 0l);
if (s < k * 2) return 0;
int n = nums.size();
long f[n + 1][k];
int ans = 1;
memset(f, 0, sizeof f);
f[0][0] = 1;
for (int i = 1; i <= n; ++i) {
int v = nums[i - 1];
ans = ans * 2 % mod;
for (int j = 0; j < k; ++j) {
f[i][j] = f[i - 1][j];
if (j >= v) {
f[i][j] = (f[i][j] + f[i - 1][j - v]) % mod;
}
}
}
for (int j = 0; j < k; ++j) {
ans = (ans - f[n][j] * 2 % mod + mod) % mod;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
| func countPartitions(nums []int, k int) int {
s := 0
for _, v := range nums {
s += v
}
if s < k*2 {
return 0
}
const mod int = 1e9 + 7
n := len(nums)
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, k)
}
f[0][0] = 1
ans := 1
for i := 1; i <= n; i++ {
v := nums[i-1]
ans = ans * 2 % mod
for j := 0; j < k; j++ {
f[i][j] = f[i-1][j]
if j >= v {
f[i][j] = (f[i][j] + f[i-1][j-v]) % mod
}
}
}
for j := 0; j < k; j++ {
ans = (ans - f[n][j]*2%mod + mod) % mod
}
return ans
}
|