Description#
Your music player contains n
different songs. You want to listen to goal
songs (not necessarily different) during your trip. To avoid boredom, you will create a playlist so that:
- Every song is played at least once.
- A song can only be played again only if
k
other songs have been played.
Given n
, goal
, and k
, return the number of possible playlists that you can create. Since the answer can be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 3, goal = 3, k = 1
Output: 6
Explanation: There are 6 possible playlists: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], and [3, 2, 1].
Example 2:
Input: n = 2, goal = 3, k = 0
Output: 6
Explanation: There are 6 possible playlists: [1, 1, 2], [1, 2, 1], [2, 1, 1], [2, 2, 1], [2, 1, 2], and [1, 2, 2].
Example 3:
Input: n = 2, goal = 3, k = 1
Output: 2
Explanation: There are 2 possible playlists: [1, 2, 1] and [2, 1, 2].
Constraints:
0 <= k < n <= goal <= 100
Solutions#
Solution 1: Dynamic Programming#
We define $f[i][j]$ to be the number of playlists that can be made from $i$ songs with exactly $j$ different songs. We have $f[0][0] = 1$ and the answer is $f[goal][n]$.
For $f[i][j]$, we can choose a song that we have not listened before, so the previous state is $f[i - 1][j - 1]$, and there are $n - (j - 1) = n - j + 1$ options. Thus, $f[i][j] += f[i - 1][j - 1] \times (n - j + 1)$. We can also choose a song that we have listened before, so the previous state is $f[i - 1][j]$, and there are $j - k$ options. Thus, $f[i][j] += f[i - 1][j] \times (j - k)$, where $j \geq k$.
Therefore, we have the transition equation:
$$
f[i][j] = \begin{cases}
1 & i = 0, j = 0 \
f[i - 1][j - 1] \times (n - j + 1) + f[i - 1][j] \times (j - k) & i \geq 1, j \geq 1
\end{cases}
$$
The final answer is $f[goal][n]$.
The time complexity is $O(goal \times n)$, and the space complexity is $O(goal \times n)$. Here, $goal$ and $n$ are the parameters given in the problem.
Notice that $f[i][j]$ only depends on $f[i - 1][j - 1]$ and $f[i - 1][j]$, so we can use rolling array to optimize the space complexity. The time complexity is unchanged.
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution:
def numMusicPlaylists(self, n: int, goal: int, k: int) -> int:
mod = 10**9 + 7
f = [[0] * (n + 1) for _ in range(goal + 1)]
f[0][0] = 1
for i in range(1, goal + 1):
for j in range(1, n + 1):
f[i][j] = f[i - 1][j - 1] * (n - j + 1)
if j > k:
f[i][j] += f[i - 1][j] * (j - k)
f[i][j] %= mod
return f[goal][n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
public int numMusicPlaylists(int n, int goal, int k) {
final int mod = (int) 1e9 + 7;
long[][] f = new long[goal + 1][n + 1];
f[0][0] = 1;
for (int i = 1; i <= goal; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = f[i - 1][j - 1] * (n - j + 1);
if (j > k) {
f[i][j] += f[i - 1][j] * (j - k);
}
f[i][j] %= mod;
}
}
return (int) f[goal][n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public:
int numMusicPlaylists(int n, int goal, int k) {
const int mod = 1e9 + 7;
long long f[goal + 1][n + 1];
memset(f, 0, sizeof(f));
f[0][0] = 1;
for (int i = 1; i <= goal; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = f[i - 1][j - 1] * (n - j + 1);
if (j > k) {
f[i][j] += f[i - 1][j] * (j - k);
}
f[i][j] %= mod;
}
}
return f[goal][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| func numMusicPlaylists(n int, goal int, k int) int {
const mod = 1e9 + 7
f := make([][]int, goal+1)
for i := range f {
f[i] = make([]int, n+1)
}
f[0][0] = 1
for i := 1; i <= goal; i++ {
for j := 1; j <= n; j++ {
f[i][j] = f[i-1][j-1] * (n - j + 1)
if j > k {
f[i][j] += f[i-1][j] * (j - k)
}
f[i][j] %= mod
}
}
return f[goal][n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| function numMusicPlaylists(n: number, goal: number, k: number): number {
const mod = 1e9 + 7;
const f = new Array(goal + 1).fill(0).map(() => new Array(n + 1).fill(0));
f[0][0] = 1;
for (let i = 1; i <= goal; ++i) {
for (let j = 1; j <= n; ++j) {
f[i][j] = f[i - 1][j - 1] * (n - j + 1);
if (j > k) {
f[i][j] += f[i - 1][j] * (j - k);
}
f[i][j] %= mod;
}
}
return f[goal][n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| impl Solution {
#[allow(dead_code)]
pub fn num_music_playlists(n: i32, goal: i32, k: i32) -> i32 {
let mut dp: Vec<Vec<i64>> = vec![vec![0; n as usize + 1]; goal as usize + 1];
// Initialize the dp vector
dp[0][0] = 1;
// Begin the dp process
for i in 1..=goal as usize {
for j in 1..=n as usize {
// Choose the song that has not been chosen before
// We have n - (j - 1) songs to choose
dp[i][j] += dp[i - 1][j - 1] * ((n - ((j as i32) - 1)) as i64);
// Choose the song that has been chosen before
// We have j - k songs to choose if j > k
if (j as i32) > k {
dp[i][j] += dp[i - 1][j] * (((j as i32) - k) as i64);
}
// Update dp[i][j]
dp[i][j] %= ((1e9 as i32) + 7) as i64;
}
}
dp[goal as usize][n as usize] as i32
}
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def numMusicPlaylists(self, n: int, goal: int, k: int) -> int:
mod = 10**9 + 7
f = [0] * (goal + 1)
f[0] = 1
for i in range(1, goal + 1):
g = [0] * (goal + 1)
for j in range(1, n + 1):
g[j] = f[j - 1] * (n - j + 1)
if j > k:
g[j] += f[j] * (j - k)
g[j] %= mod
f = g
return f[n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public int numMusicPlaylists(int n, int goal, int k) {
final int mod = (int) 1e9 + 7;
long[] f = new long[n + 1];
f[0] = 1;
for (int i = 1; i <= goal; ++i) {
long[] g = new long[n + 1];
for (int j = 1; j <= n; ++j) {
g[j] = f[j - 1] * (n - j + 1);
if (j > k) {
g[j] += f[j] * (j - k);
}
g[j] %= mod;
}
f = g;
}
return (int) f[n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
int numMusicPlaylists(int n, int goal, int k) {
const int mod = 1e9 + 7;
vector<long long> f(n + 1);
f[0] = 1;
for (int i = 1; i <= goal; ++i) {
vector<long long> g(n + 1);
for (int j = 1; j <= n; ++j) {
g[j] = f[j - 1] * (n - j + 1);
if (j > k) {
g[j] += f[j] * (j - k);
}
g[j] %= mod;
}
f = move(g);
}
return f[n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| func numMusicPlaylists(n int, goal int, k int) int {
const mod = 1e9 + 7
f := make([]int, goal+1)
f[0] = 1
for i := 1; i <= goal; i++ {
g := make([]int, goal+1)
for j := 1; j <= n; j++ {
g[j] = f[j-1] * (n - j + 1)
if j > k {
g[j] += f[j] * (j - k)
}
g[j] %= mod
}
f = g
}
return f[n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| function numMusicPlaylists(n: number, goal: number, k: number): number {
const mod = 1e9 + 7;
let f = new Array(goal + 1).fill(0);
f[0] = 1;
for (let i = 1; i <= goal; ++i) {
const g = new Array(goal + 1).fill(0);
for (let j = 1; j <= n; ++j) {
g[j] = f[j - 1] * (n - j + 1);
if (j > k) {
g[j] += f[j] * (j - k);
}
g[j] %= mod;
}
f = g;
}
return f[n];
}
|