Description#
You are given a list of strings of the same length words
and a string target
.
Your task is to form target
using the given words
under the following rules:
target
should be formed from left to right.- To form the
ith
character (0-indexed) of target
, you can choose the kth
character of the jth
string in words
if target[i] = words[j][k]
. - Once you use the
kth
character of the jth
string of words
, you can no longer use the xth
character of any string in words
where x <= k
. In other words, all characters to the left of or at index k
become unusuable for every string. - Repeat the process until you form the string
target
.
Notice that you can use multiple characters from the same string in words
provided the conditions above are met.
Return the number of ways to form target
from words
. Since the answer may be too large, return it modulo 109 + 7
.
Example 1:
Input: words = ["acca","bbbb","caca"], target = "aba"
Output: 6
Explanation: There are 6 ways to form target.
"aba" -> index 0 ("acca"), index 1 ("bbbb"), index 3 ("caca")
"aba" -> index 0 ("acca"), index 2 ("bbbb"), index 3 ("caca")
"aba" -> index 0 ("acca"), index 1 ("bbbb"), index 3 ("acca")
"aba" -> index 0 ("acca"), index 2 ("bbbb"), index 3 ("acca")
"aba" -> index 1 ("caca"), index 2 ("bbbb"), index 3 ("acca")
"aba" -> index 1 ("caca"), index 2 ("bbbb"), index 3 ("caca")
Example 2:
Input: words = ["abba","baab"], target = "bab"
Output: 4
Explanation: There are 4 ways to form target.
"bab" -> index 0 ("baab"), index 1 ("baab"), index 2 ("abba")
"bab" -> index 0 ("baab"), index 1 ("baab"), index 3 ("baab")
"bab" -> index 0 ("baab"), index 2 ("baab"), index 3 ("baab")
"bab" -> index 1 ("abba"), index 2 ("baab"), index 3 ("baab")
Constraints:
1 <= words.length <= 1000
1 <= words[i].length <= 1000
- All strings in
words
have the same length. 1 <= target.length <= 1000
words[i]
and target
contain only lowercase English letters.
Solutions#
Solution 1: Preprocessing + Memory Search#
We noticed that the length of each string in the string array $words$ is the same, so let’s remember $n$, then we can preprocess a two-dimensional array $cnt$, where $cnt[j][c]$ represents the string array $words$ The number of characters $c$ in the $j$-th position of.
Next, we design a function $dfs(i, j)$, which represents the number of schemes that construct $target[i,..]$ and the currently selected character position from $words$ is $j$. Then the answer is $dfs(0, 0)$.
The calculation logic of function $dfs(i, j)$ is as follows:
- If $i \geq m$, it means that all characters in $target$ have been selected, then the number of schemes is $1$.
- If $j \geq n$, it means that all characters in $words$ have been selected, then the number of schemes is $0$.
- Otherwise, we can choose not to select the character in the $j$-th position of $words$, then the number of schemes is $dfs(i, j + 1)$; or we choose the character in the $j$-th position of $words$, then the number of schemes is $dfs(i + 1, j + 1) \times cnt[j][target[i] - ‘a’]$.
Finally, we return $dfs(0, 0)$. Note that the answer is taken in modulo operation.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ is the length of the string $target$, and $n$ is the length of each string in the string array $words$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution:
def numWays(self, words: List[str], target: str) -> int:
@cache
def dfs(i: int, j: int) -> int:
if i >= m:
return 1
if j >= n:
return 0
ans = dfs(i + 1, j + 1) * cnt[j][ord(target[i]) - ord('a')]
ans = (ans + dfs(i, j + 1)) % mod
return ans
m, n = len(target), len(words[0])
cnt = [[0] * 26 for _ in range(n)]
for w in words:
for j, c in enumerate(w):
cnt[j][ord(c) - ord('a')] += 1
mod = 10**9 + 7
return dfs(0, 0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
| class Solution {
private int m;
private int n;
private String target;
private Integer[][] f;
private int[][] cnt;
private final int mod = (int) 1e9 + 7;
public int numWays(String[] words, String target) {
m = target.length();
n = words[0].length();
f = new Integer[m][n];
this.target = target;
cnt = new int[n][26];
for (var w : words) {
for (int j = 0; j < n; ++j) {
cnt[j][w.charAt(j) - 'a']++;
}
}
return dfs(0, 0);
}
private int dfs(int i, int j) {
if (i >= m) {
return 1;
}
if (j >= n) {
return 0;
}
if (f[i][j] != null) {
return f[i][j];
}
long ans = dfs(i, j + 1);
ans += 1L * dfs(i + 1, j + 1) * cnt[j][target.charAt(i) - 'a'];
ans %= mod;
return f[i][j] = (int) ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| class Solution {
public:
int numWays(vector<string>& words, string target) {
const int mod = 1e9 + 7;
int m = target.size(), n = words[0].size();
vector<vector<int>> cnt(n, vector<int>(26));
for (auto& w : words) {
for (int j = 0; j < n; ++j) {
++cnt[j][w[j] - 'a'];
}
}
int f[m][n];
memset(f, -1, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) -> int {
if (i >= m) {
return 1;
}
if (j >= n) {
return 0;
}
if (f[i][j] != -1) {
return f[i][j];
}
int ans = dfs(i, j + 1);
ans = (ans + 1LL * dfs(i + 1, j + 1) * cnt[j][target[i] - 'a']) % mod;
return f[i][j] = ans;
};
return dfs(0, 0);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| func numWays(words []string, target string) int {
m, n := len(target), len(words[0])
f := make([][]int, m)
cnt := make([][26]int, n)
for _, w := range words {
for j, c := range w {
cnt[j][c-'a']++
}
}
for i := range f {
f[i] = make([]int, n)
for j := range f[i] {
f[i][j] = -1
}
}
const mod = 1e9 + 7
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i >= m {
return 1
}
if j >= n {
return 0
}
if f[i][j] != -1 {
return f[i][j]
}
ans := dfs(i, j+1)
ans = (ans + dfs(i+1, j+1)*cnt[j][target[i]-'a']) % mod
f[i][j] = ans
return ans
}
return dfs(0, 0)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| function numWays(words: string[], target: string): number {
const m = target.length;
const n = words[0].length;
const f = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
const mod = 1e9 + 7;
for (let j = 0; j <= n; ++j) {
f[0][j] = 1;
}
const cnt = new Array(n).fill(0).map(() => new Array(26).fill(0));
for (const w of words) {
for (let j = 0; j < n; ++j) {
++cnt[j][w.charCodeAt(j) - 97];
}
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * cnt[j - 1][target.charCodeAt(i - 1) - 97];
f[i][j] %= mod;
}
}
return f[m][n];
}
|
Solution 2: Preprocessing + Dynamic Programming#
Similar to Solution 1, we can first preprocess a two-dimensional array $cnt$, where $cnt[j][c]$ represents the number of characters $c$ in the $j$-th position of the string array $words$.
Next, we define $f[i][j]$ which represents the number of ways to construct the first $i$ characters of $target$, and currently select characters from the first $j$ characters of each word in $words$. Then the answer is $f[m][n]$. Initially $f[0][j] = 1$, where $0 \leq j \leq n$.
Consider $f[i][j]$, where $i \gt 0$, $j \gt 0$. We can choose not to select the character in the $j$-th position of $words$, in which case the number of ways is $f[i][j - 1]$; or we choose the character in the $j$-th position of $words$, in which case the number of ways is $f[i - 1][j - 1] \times cnt[j - 1][target[i - 1] - ‘a’]$. Finally, we add the number of ways in these two cases, which is the value of $f[i][j]$.
Finally, we return $f[m][n]$. Note the mod operation of the answer.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ is the length of the string $target$, and $n$ is the length of each string in the string array $words$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution:
def numWays(self, words: List[str], target: str) -> int:
m, n = len(target), len(words[0])
cnt = [[0] * 26 for _ in range(n)]
for w in words:
for j, c in enumerate(w):
cnt[j][ord(c) - ord('a')] += 1
mod = 10**9 + 7
f = [[0] * (n + 1) for _ in range(m + 1)]
f[0] = [1] * (n + 1)
for i in range(1, m + 1):
for j in range(1, n + 1):
f[i][j] = (
f[i][j - 1]
+ f[i - 1][j - 1] * cnt[j - 1][ord(target[i - 1]) - ord('a')]
)
f[i][j] %= mod
return f[m][n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| class Solution {
public int numWays(String[] words, String target) {
int m = target.length();
int n = words[0].length();
final int mod = (int) 1e9 + 7;
long[][] f = new long[m + 1][n + 1];
Arrays.fill(f[0], 1);
int[][] cnt = new int[n][26];
for (var w : words) {
for (int j = 0; j < n; ++j) {
cnt[j][w.charAt(j) - 'a']++;
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * cnt[j - 1][target.charAt(i - 1) - 'a'];
f[i][j] %= mod;
}
}
return (int) f[m][n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| class Solution {
public:
int numWays(vector<string>& words, string target) {
int m = target.size(), n = words[0].size();
const int mod = 1e9 + 7;
long long f[m + 1][n + 1];
memset(f, 0, sizeof(f));
fill(f[0], f[0] + n + 1, 1);
vector<vector<int>> cnt(n, vector<int>(26));
for (auto& w : words) {
for (int j = 0; j < n; ++j) {
++cnt[j][w[j] - 'a'];
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * cnt[j - 1][target[i - 1] - 'a'];
f[i][j] %= mod;
}
}
return f[m][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| func numWays(words []string, target string) int {
const mod = 1e9 + 7
m, n := len(target), len(words[0])
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
for j := range f[0] {
f[0][j] = 1
}
cnt := make([][26]int, n)
for _, w := range words {
for j, c := range w {
cnt[j][c-'a']++
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
f[i][j] = f[i][j-1] + f[i-1][j-1]*cnt[j-1][target[i-1]-'a']
f[i][j] %= mod
}
}
return f[m][n]
}
|