Description#
You are given two integers n
and m
which represent the size of a 1-indexed grid. You are also given an integer k
, a 1-indexed integer array source
and a 1-indexed integer array dest
, where source
and dest
are in the form [x, y]
representing a cell on the given grid.
You can move through the grid in the following way:
- You can go from cell
[x1, y1]
to cell [x2, y2]
if either x1 == x2
or y1 == y2
. - Note that you can't move to the cell you are already in e.g.
x1 == x2
and y1 == y2
.
Return the number of ways you can reach dest
from source
by moving through the grid exactly k
times.
Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: n = 3, m = 2, k = 2, source = [1,1], dest = [2,2]
Output: 2
Explanation: There are 2 possible sequences of reaching [2,2] from [1,1]:
- [1,1] -> [1,2] -> [2,2]
- [1,1] -> [2,1] -> [2,2]
Example 2:
Input: n = 3, m = 4, k = 3, source = [1,2], dest = [2,3]
Output: 9
Explanation: There are 9 possible sequences of reaching [2,3] from [1,2]:
- [1,2] -> [1,1] -> [1,3] -> [2,3]
- [1,2] -> [1,1] -> [2,1] -> [2,3]
- [1,2] -> [1,3] -> [3,3] -> [2,3]
- [1,2] -> [1,4] -> [1,3] -> [2,3]
- [1,2] -> [1,4] -> [2,4] -> [2,3]
- [1,2] -> [2,2] -> [2,1] -> [2,3]
- [1,2] -> [2,2] -> [2,4] -> [2,3]
- [1,2] -> [3,2] -> [2,2] -> [2,3]
- [1,2] -> [3,2] -> [3,3] -> [2,3]
Constraints:
2 <= n, m <= 109
1 <= k <= 105
source.length == dest.length == 2
1 <= source[1], dest[1] <= n
1 <= source[2], dest[2] <= m
Solutions#
Solution 1: Dynamic Programming#
We define the following states:
- $f[0]$ represents the number of ways to move from
source
to source
itself; - $f[1]$ represents the number of ways to move from
source
to another row in the same column; - $f[2]$ represents the number of ways to move from
source
to another column in the same row; - $f[3]$ represents the number of ways to move from
source
to another row and another column.
Initially, $f[0] = 1$, and the other states are all $0$.
For each state, we can calculate the current state based on the previous state, as follows:
$$
\begin{aligned}
g[0] &= (n - 1) \times f[1] + (m - 1) \times f[2] \
g[1] &= f[0] + (n - 2) \times f[1] + (m - 1) \times f[3] \
g[2] &= f[0] + (m - 2) \times f[2] + (n - 1) \times f[3] \
g[3] &= f[1] + f[2] + (n - 2) \times f[3] + (m - 2) \times f[3]
\end{aligned}
$$
We loop $k$ times, and finally check whether source
and dest
are in the same row or column, and return the corresponding state.
The time complexity is $O(k)$, where $k$ is the number of moves. The space complexity is $O(1)$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution:
def numberOfWays(
self, n: int, m: int, k: int, source: List[int], dest: List[int]
) -> int:
mod = 10**9 + 7
a, b, c, d = 1, 0, 0, 0
for _ in range(k):
aa = ((n - 1) * b + (m - 1) * c) % mod
bb = (a + (n - 2) * b + (m - 1) * d) % mod
cc = (a + (m - 2) * c + (n - 1) * d) % mod
dd = (b + c + (n - 2) * d + (m - 2) * d) % mod
a, b, c, d = aa, bb, cc, dd
if source[0] == dest[0]:
return a if source[1] == dest[1] else c
return b if source[1] == dest[1] else d
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public int numberOfWays(int n, int m, int k, int[] source, int[] dest) {
final int mod = 1000000007;
long[] f = new long[4];
f[0] = 1;
while (k-- > 0) {
long[] g = new long[4];
g[0] = ((n - 1) * f[1] + (m - 1) * f[2]) % mod;
g[1] = (f[0] + (n - 2) * f[1] + (m - 1) * f[3]) % mod;
g[2] = (f[0] + (m - 2) * f[2] + (n - 1) * f[3]) % mod;
g[3] = (f[1] + f[2] + (n - 2) * f[3] + (m - 2) * f[3]) % mod;
f = g;
}
if (source[0] == dest[0]) {
return source[1] == dest[1] ? (int) f[0] : (int) f[2];
}
return source[1] == dest[1] ? (int) f[1] : (int) f[3];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
int numberOfWays(int n, int m, int k, vector<int>& source, vector<int>& dest) {
const int mod = 1e9 + 7;
vector<long long> f(4);
f[0] = 1;
while (k--) {
vector<long long> g(4);
g[0] = ((n - 1) * f[1] + (m - 1) * f[2]) % mod;
g[1] = (f[0] + (n - 2) * f[1] + (m - 1) * f[3]) % mod;
g[2] = (f[0] + (m - 2) * f[2] + (n - 1) * f[3]) % mod;
g[3] = (f[1] + f[2] + (n - 2) * f[3] + (m - 2) * f[3]) % mod;
f = move(g);
}
if (source[0] == dest[0]) {
return source[1] == dest[1] ? f[0] : f[2];
}
return source[1] == dest[1] ? f[1] : f[3];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| func numberOfWays(n int, m int, k int, source []int, dest []int) int {
const mod int = 1e9 + 7
f := []int{1, 0, 0, 0}
for i := 0; i < k; i++ {
g := make([]int, 4)
g[0] = ((n-1)*f[1] + (m-1)*f[2]) % mod
g[1] = (f[0] + (n-2)*f[1] + (m-1)*f[3]) % mod
g[2] = (f[0] + (m-2)*f[2] + (n-1)*f[3]) % mod
g[3] = (f[1] + f[2] + (n-2)*f[3] + (m-2)*f[3]) % mod
f = g
}
if source[0] == dest[0] {
if source[1] == dest[1] {
return f[0]
}
return f[2]
}
if source[1] == dest[1] {
return f[1]
}
return f[3]
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution:
def numberOfWays(
self, n: int, m: int, k: int, source: List[int], dest: List[int]
) -> int:
mod = 10**9 + 7
f = [1, 0, 0, 0]
for _ in range(k):
g = [0] * 4
g[0] = ((n - 1) * f[1] + (m - 1) * f[2]) % mod
g[1] = (f[0] + (n - 2) * f[1] + (m - 1) * f[3]) % mod
g[2] = (f[0] + (m - 2) * f[2] + (n - 1) * f[3]) % mod
g[3] = (f[1] + f[2] + (n - 2) * f[3] + (m - 2) * f[3]) % mod
f = g
if source[0] == dest[0]:
return f[0] if source[1] == dest[1] else f[2]
return f[1] if source[1] == dest[1] else f[3]
|