Description#
A boolean expression is an expression that evaluates to either true
or false
. It can be in one of the following shapes:
't'
that evaluates to true
.'f'
that evaluates to false
.'!(subExpr)'
that evaluates to the logical NOT of the inner expression subExpr
.'&(subExpr1, subExpr2, ..., subExprn)'
that evaluates to the logical AND of the inner expressions subExpr1, subExpr2, ..., subExprn
where n >= 1
.'|(subExpr1, subExpr2, ..., subExprn)'
that evaluates to the logical OR of the inner expressions subExpr1, subExpr2, ..., subExprn
where n >= 1
.
Given a string expression
that represents a boolean expression, return the evaluation of that expression.
It is guaranteed that the given expression is valid and follows the given rules.
Example 1:
Input: expression = "&(|(f))"
Output: false
Explanation:
First, evaluate |(f) --> f. The expression is now "&(f)".
Then, evaluate &(f) --> f. The expression is now "f".
Finally, return false.
Example 2:
Input: expression = "|(f,f,f,t)"
Output: true
Explanation: The evaluation of (false OR false OR false OR true) is true.
Example 3:
Input: expression = "!(&(f,t))"
Output: true
Explanation:
First, evaluate &(f,t) --> (false AND true) --> false --> f. The expression is now "!(f)".
Then, evaluate !(f) --> NOT false --> true. We return true.
Constraints:
1 <= expression.length <= 2 * 104
- expression[i] is one following characters:
'('
, ')'
, '&'
, '|'
, '!'
, 't'
, 'f'
, and ','
.
Solutions#
Solution 1: Stack#
For this type of expression parsing problem, we can use a stack to assist.
We traverse the expression expression
from left to right. For each character $c$ we encounter:
- If $c$ is one of
"tf!&|"
, we push it directly onto the stack; - If $c$ is a right parenthesis
')'
, we pop elements from the stack until we encounter an operator '!'
, '&'
, or '|'
. During this process, we use variables $t$ and $f$ to record the number of 't'
and 'f'
characters popped from the stack. Finally, based on the number of characters popped and the operator, we calculate a new character 't'
or 'f'
and push it onto the stack.
After traversing the expression expression
, there is only one character left in the stack. If it is 't'
, return true
, otherwise return false
.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the expression expression
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution:
def parseBoolExpr(self, expression: str) -> bool:
stk = []
for c in expression:
if c in 'tf!&|':
stk.append(c)
elif c == ')':
t = f = 0
while stk[-1] in 'tf':
t += stk[-1] == 't'
f += stk[-1] == 'f'
stk.pop()
match stk.pop():
case '!':
c = 't' if f else 'f'
case '&':
c = 'f' if f else 't'
case '|':
c = 't' if t else 'f'
stk.append(c)
return stk[0] == 't'
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| class Solution {
public boolean parseBoolExpr(String expression) {
Deque<Character> stk = new ArrayDeque<>();
for (char c : expression.toCharArray()) {
if (c != '(' && c != ')' && c != ',') {
stk.push(c);
} else if (c == ')') {
int t = 0, f = 0;
while (stk.peek() == 't' || stk.peek() == 'f') {
t += stk.peek() == 't' ? 1 : 0;
f += stk.peek() == 'f' ? 1 : 0;
stk.pop();
}
char op = stk.pop();
c = 'f';
if ((op == '!' && f > 0) || (op == '&' && f == 0) || (op == '|' && t > 0)) {
c = 't';
}
stk.push(c);
}
}
return stk.peek() == 't';
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| class Solution {
public:
bool parseBoolExpr(string expression) {
stack<char> stk;
for (char c : expression) {
if (c != '(' && c != ')' && c != ',')
stk.push(c);
else if (c == ')') {
int t = 0, f = 0;
while (stk.top() == 't' || stk.top() == 'f') {
t += stk.top() == 't';
f += stk.top() == 'f';
stk.pop();
}
char op = stk.top();
stk.pop();
if (op == '!') c = f ? 't' : 'f';
if (op == '&') c = f ? 'f' : 't';
if (op == '|') c = t ? 't' : 'f';
stk.push(c);
}
}
return stk.top() == 't';
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| func parseBoolExpr(expression string) bool {
stk := []rune{}
for _, c := range expression {
if c != '(' && c != ')' && c != ',' {
stk = append(stk, c)
} else if c == ')' {
var t, f int
for stk[len(stk)-1] == 't' || stk[len(stk)-1] == 'f' {
if stk[len(stk)-1] == 't' {
t++
} else {
f++
}
stk = stk[:len(stk)-1]
}
op := stk[len(stk)-1]
stk = stk[:len(stk)-1]
c = 'f'
if (op == '!' && f > 0) || (op == '&' && f == 0) || (op == '|' && t > 0) {
c = 't'
}
stk = append(stk, c)
}
}
return stk[0] == 't'
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| function parseBoolExpr(expression: string): boolean {
const expr = expression;
const n = expr.length;
let i = 0;
const dfs = () => {
let res: boolean[] = [];
while (i < n) {
const c = expr[i++];
if (c === ')') {
break;
}
if (c === '!') {
res.push(!dfs()[0]);
} else if (c === '|') {
res.push(dfs().some(v => v));
} else if (c === '&') {
res.push(dfs().every(v => v));
} else if (c === 't') {
res.push(true);
} else if (c === 'f') {
res.push(false);
}
}
return res;
};
return dfs()[0];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
| impl Solution {
fn dfs(i: &mut usize, expr: &[u8]) -> Vec<bool> {
let n = expr.len();
let mut res = Vec::new();
while *i < n {
let c = expr[*i];
*i += 1;
match c {
b')' => {
break;
}
b't' => {
res.push(true);
}
b'f' => {
res.push(false);
}
b'!' => {
res.push(!Self::dfs(i, expr)[0]);
}
b'&' => {
res.push(
Self::dfs(i, expr)
.iter()
.all(|v| *v)
);
}
b'|' => {
res.push(
Self::dfs(i, expr)
.iter()
.any(|v| *v)
);
}
_ => {}
}
}
res
}
pub fn parse_bool_expr(expression: String) -> bool {
let expr = expression.as_bytes();
let mut i = 0;
Self::dfs(&mut i, expr)[0]
}
}
|