Description#
Given four integers sx
, sy
, tx
, and ty
, return true
if it is possible to convert the point (sx, sy)
to the point (tx, ty)
through some operations, or false
otherwise.
The allowed operation on some point (x, y)
is to convert it to either (x, x + y)
or (x + y, y)
.
Example 1:
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: true
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
Example 2:
Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: false
Example 3:
Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: true
Constraints:
1 <= sx, sy, tx, ty <= 109
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def reachingPoints(self, sx: int, sy: int, tx: int, ty: int) -> bool:
while tx > sx and ty > sy and tx != ty:
if tx > ty:
tx %= ty
else:
ty %= tx
if tx == sx and ty == sy:
return True
if tx == sx:
return ty > sy and (ty - sy) % tx == 0
if ty == sy:
return tx > sx and (tx - sx) % ty == 0
return False
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution {
public boolean reachingPoints(int sx, int sy, int tx, int ty) {
while (tx > sx && ty > sy && tx != ty) {
if (tx > ty) {
tx %= ty;
} else {
ty %= tx;
}
}
if (tx == sx && ty == sy) {
return true;
}
if (tx == sx) {
return ty > sy && (ty - sy) % tx == 0;
}
if (ty == sy) {
return tx > sx && (tx - sx) % ty == 0;
}
return false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public:
bool reachingPoints(int sx, int sy, int tx, int ty) {
while (tx > sx && ty > sy && tx != ty) {
if (tx > ty)
tx %= ty;
else
ty %= tx;
}
if (tx == sx && ty == sy) return true;
if (tx == sx) return ty > sy && (ty - sy) % tx == 0;
if (ty == sy) return tx > sx && (tx - sx) % ty == 0;
return false;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| func reachingPoints(sx int, sy int, tx int, ty int) bool {
for tx > sx && ty > sy && tx != ty {
if tx > ty {
tx %= ty
} else {
ty %= tx
}
}
if tx == sx && ty == sy {
return true
}
if tx == sx {
return ty > sy && (ty-sy)%tx == 0
}
if ty == sy {
return tx > sx && (tx-sx)%ty == 0
}
return false
}
|