27. Remove Element
Description
Given an integer array nums
and an integer val
, remove all occurrences of val
in nums
in-place. The order of the elements may be changed. Then return the number of elements in nums
which are not equal to val
.
Consider the number of elements in nums
which are not equal to val
be k
, to get accepted, you need to do the following things:
- Change the array
nums
such that the firstk
elements ofnums
contain the elements which are not equal toval
. The remaining elements ofnums
are not important as well as the size ofnums
. - Return
k
.
Custom Judge:
The judge will test your solution with the following code:
int[] nums = [...]; // Input array int val = ...; // Value to remove int[] expectedNums = [...]; // The expected answer with correct length. // It is sorted with no values equaling val. int k = removeElement(nums, val); // Calls your implementation assert k == expectedNums.length; sort(nums, 0, k); // Sort the first k elements of nums for (int i = 0; i < actualLength; i++) { assert nums[i] == expectedNums[i]; }
If all assertions pass, then your solution will be accepted.
Example 1:
Input: nums = [3,2,2,3], val = 3 Output: 2, nums = [2,2,_,_] Explanation: Your function should return k = 2, with the first two elements of nums being 2. It does not matter what you leave beyond the returned k (hence they are underscores).
Example 2:
Input: nums = [0,1,2,2,3,0,4,2], val = 2 Output: 5, nums = [0,1,4,0,3,_,_,_] Explanation: Your function should return k = 5, with the first five elements of nums containing 0, 0, 1, 3, and 4. Note that the five elements can be returned in any order. It does not matter what you leave beyond the returned k (hence they are underscores).
Constraints:
0 <= nums.length <= 100
0 <= nums[i] <= 50
0 <= val <= 100
Solutions
Solution 1: One Pass
We use the variable $k$ to record the number of elements that are not equal to $val$.
Traverse the array $nums$, if the current element $x$ is not equal to $val$, then assign $x$ to $nums[k]$, and increment $k$ by $1$.
Finally, return $k$.
The time complexity is $O(n)$ and the space complexity is $O(1)$, where $n$ is the length of the array $nums$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|