2171. Removing Minimum Number of Magic Beans
Description
You are given an array of positive integers beans
, where each integer represents the number of magic beans found in a particular magic bag.
Remove any number of beans (possibly none) from each bag such that the number of beans in each remaining non-empty bag (still containing at least one bean) is equal. Once a bean has been removed from a bag, you are not allowed to return it to any of the bags.
Return the minimum number of magic beans that you have to remove.
Example 1:
Input: beans = [4,1,6,5] Output: 4 Explanation: - We remove 1 bean from the bag with only 1 bean. This results in the remaining bags: [4,0,6,5] - Then we remove 2 beans from the bag with 6 beans. This results in the remaining bags: [4,0,4,5] - Then we remove 1 bean from the bag with 5 beans. This results in the remaining bags: [4,0,4,4] We removed a total of 1 + 2 + 1 = 4 beans to make the remaining non-empty bags have an equal number of beans. There are no other solutions that remove 4 beans or fewer.
Example 2:
Input: beans = [2,10,3,2] Output: 7 Explanation: - We remove 2 beans from one of the bags with 2 beans. This results in the remaining bags: [0,10,3,2] - Then we remove 2 beans from the other bag with 2 beans. This results in the remaining bags: [0,10,3,0] - Then we remove 3 beans from the bag with 3 beans. This results in the remaining bags: [0,10,0,0] We removed a total of 2 + 2 + 3 = 7 beans to make the remaining non-empty bags have an equal number of beans. There are no other solutions that removes 7 beans or fewer.
Constraints:
1 <= beans.length <= 105
1 <= beans[i] <= 105
Solutions
Solution 1: Sorting + Enumeration
We can sort all the beans in the bags in ascending order, and then enumerate the number of beans $beans[i]$ in each bag as the final number of beans in the bag. The total remaining number of beans is $beans[i] \times (n - i)$, so the number of beans that need to be taken out is $s - beans[i] \times (n - i)$, where $s$ is the total number of beans in all bags. We need to find the minimum number of beans that need to be taken out among all schemes.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the number of bags.
|
|
|
|
|
|
|
|
|
|