7. Reverse Integer
Description
Given a signed 32-bit integer x
, return x
with its digits reversed. If reversing x
causes the value to go outside the signed 32-bit integer range [-231, 231 - 1]
, then return 0
.
Assume the environment does not allow you to store 64-bit integers (signed or unsigned).
Example 1:
Input: x = 123 Output: 321
Example 2:
Input: x = -123 Output: -321
Example 3:
Input: x = 120 Output: 21
Constraints:
-231 <= x <= 231 - 1
Solutions
Solution 1: Mathematics
Let’s denote $mi$ and $mx$ as $-2^{31}$ and $2^{31} - 1$ respectively, then the reverse result of $x$, $ans$, needs to satisfy $mi \le ans \le mx$.
We can continuously take the remainder of $x$ to get the last digit $y$ of $x$, and add $y$ to the end of $ans$. Before adding $y$, we need to check if $ans$ overflows. That is, check whether $ans \times 10 + y$ is within the range $[mi, mx]$.
If $x \gt 0$, it needs to satisfy $ans \times 10 + y \leq mx$, that is, $ans \times 10 + y \leq \left \lfloor \frac{mx}{10} \right \rfloor \times 10 + 7$. Rearranging gives $(ans - \left \lfloor \frac{mx}{10} \right \rfloor) \times 10 \leq 7 - y$.
Next, we discuss the conditions for the inequality to hold:
- When $ans \lt \left \lfloor \frac{mx}{10} \right \rfloor$, the inequality obviously holds;
- When $ans = \left \lfloor \frac{mx}{10} \right \rfloor$, the necessary and sufficient condition for the inequality to hold is $y \leq 7$. If $ans = \left \lfloor \frac{mx}{10} \right \rfloor$ and we can still add numbers, it means that the number is at the highest digit, that is, $y$ must not exceed $2$, therefore, the inequality must hold;
- When $ans \gt \left \lfloor \frac{mx}{10} \right \rfloor$, the inequality obviously does not hold.
In summary, when $x \gt 0$, the necessary and sufficient condition for the inequality to hold is $ans \leq \left \lfloor \frac{mx}{10} \right \rfloor$.
Similarly, when $x \lt 0$, the necessary and sufficient condition for the inequality to hold is $ans \geq \left \lfloor \frac{mi}{10} \right \rfloor$.
Therefore, we can check whether $ans$ overflows by checking whether $ans$ is within the range $[\left \lfloor \frac{mi}{10} \right \rfloor, \left \lfloor \frac{mx}{10} \right \rfloor]$. If it overflows, return $0$. Otherwise, add $y$ to the end of $ans$, and then remove the last digit of $x$, that is, $x \gets \left \lfloor \frac{x}{10} \right \rfloor$.
The time complexity is $O(\log |x|)$, where $|x|$ is the absolute value of $x$. The space complexity is $O(1)$.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|