900. RLE Iterator

Description

We can use run-length encoding (i.e., RLE) to encode a sequence of integers. In a run-length encoded array of even length encoding (0-indexed), for all even i, encoding[i] tells us the number of times that the non-negative integer value encoding[i + 1] is repeated in the sequence.

  • For example, the sequence arr = [8,8,8,5,5] can be encoded to be encoding = [3,8,2,5]. encoding = [3,8,0,9,2,5] and encoding = [2,8,1,8,2,5] are also valid RLE of arr.

Given a run-length encoded array, design an iterator that iterates through it.

Implement the RLEIterator class:

  • RLEIterator(int[] encoded) Initializes the object with the encoded array encoded.
  • int next(int n) Exhausts the next n elements and returns the last element exhausted in this way. If there is no element left to exhaust, return -1 instead.

 

Example 1:

Input
["RLEIterator", "next", "next", "next", "next"]
[[[3, 8, 0, 9, 2, 5]], [2], [1], [1], [2]]
Output
[null, 8, 8, 5, -1]

Explanation
RLEIterator rLEIterator = new RLEIterator([3, 8, 0, 9, 2, 5]); // This maps to the sequence [8,8,8,5,5].
rLEIterator.next(2); // exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5].
rLEIterator.next(1); // exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5].
rLEIterator.next(1); // exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5].
rLEIterator.next(2); // exhausts 2 terms, returning -1. This is because the first term exhausted was 5,
but the second term did not exist. Since the last term exhausted does not exist, we return -1.

 

Constraints:

  • 2 <= encoding.length <= 1000
  • encoding.length is even.
  • 0 <= encoding[i] <= 109
  • 1 <= n <= 109
  • At most 1000 calls will be made to next.

Solutions

Solution 1: Maintain Two Pointers

We define two pointers $i$ and $j$, where pointer $i$ points to the current run-length encoding being read, and pointer $j$ points to which character in the current run-length encoding is being read. Initially, $i = 0$, $j = 0$.

Each time we call next(n), we judge whether the remaining number of characters in the current run-length encoding $encoding[i] - j$ is less than $n$. If it is, we subtract $n$ by $encoding[i] - j$, add $2$ to $i$, and set $j$ to $0$, then continue to judge the next run-length encoding. If it is not, we add $n$ to $j$ and return $encoding[i + 1]$.

If $i$ exceeds the length of the run-length encoding and there is still no return value, it means that there are no remaining elements to be exhausted, and we return $-1$.

The time complexity is $O(n + q)$, and the space complexity is $O(n)$. Here, $n$ is the length of the run-length encoding, and $q$ is the number of times next(n) is called.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class RLEIterator:
    def __init__(self, encoding: List[int]):
        self.encoding = encoding
        self.i = 0
        self.j = 0

    def next(self, n: int) -> int:
        while self.i < len(self.encoding):
            if self.encoding[self.i] - self.j < n:
                n -= self.encoding[self.i] - self.j
                self.i += 2
                self.j = 0
            else:
                self.j += n
                return self.encoding[self.i + 1]
        return -1


# Your RLEIterator object will be instantiated and called as such:
# obj = RLEIterator(encoding)
# param_1 = obj.next(n)

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class RLEIterator {
    private int[] encoding;
    private int i;
    private int j;

    public RLEIterator(int[] encoding) {
        this.encoding = encoding;
    }

    public int next(int n) {
        while (i < encoding.length) {
            if (encoding[i] - j < n) {
                n -= (encoding[i] - j);
                i += 2;
                j = 0;
            } else {
                j += n;
                return encoding[i + 1];
            }
        }
        return -1;
    }
}

/**
 * Your RLEIterator object will be instantiated and called as such:
 * RLEIterator obj = new RLEIterator(encoding);
 * int param_1 = obj.next(n);
 */

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class RLEIterator {
public:
    RLEIterator(vector<int>& encoding) {
        this->encoding = encoding;
    }

    int next(int n) {
        while (i < encoding.size()) {
            if (encoding[i] - j < n) {
                n -= (encoding[i] - j);
                i += 2;
                j = 0;
            } else {
                j += n;
                return encoding[i + 1];
            }
        }
        return -1;
    }

private:
    vector<int> encoding;
    int i = 0;
    int j = 0;
};

/**
 * Your RLEIterator object will be instantiated and called as such:
 * RLEIterator* obj = new RLEIterator(encoding);
 * int param_1 = obj->next(n);
 */

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
type RLEIterator struct {
	encoding []int
	i, j     int
}

func Constructor(encoding []int) RLEIterator {
	return RLEIterator{encoding, 0, 0}
}

func (this *RLEIterator) Next(n int) int {
	for this.i < len(this.encoding) {
		if this.encoding[this.i]-this.j < n {
			n -= (this.encoding[this.i] - this.j)
			this.i += 2
			this.j = 0
		} else {
			this.j += n
			return this.encoding[this.i+1]
		}
	}
	return -1
}

/**
 * Your RLEIterator object will be instantiated and called as such:
 * obj := Constructor(encoding);
 * param_1 := obj.Next(n);
 */

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class RLEIterator {
    private encoding: number[];
    private i: number;
    private j: number;

    constructor(encoding: number[]) {
        this.encoding = encoding;
        this.i = 0;
        this.j = 0;
    }

    next(n: number): number {
        while (this.i < this.encoding.length) {
            if (this.encoding[this.i] - this.j < n) {
                n -= this.encoding[this.i] - this.j;
                this.i += 2;
                this.j = 0;
            } else {
                this.j += n;
                return this.encoding[this.i + 1];
            }
        }
        return -1;
    }
}

/**
 * Your RLEIterator object will be instantiated and called as such:
 * var obj = new RLEIterator(encoding)
 * var param_1 = obj.next(n)
 */