Description#
There is a family tree rooted at 0
consisting of n
nodes numbered 0
to n - 1
. You are given a 0-indexed integer array parents
, where parents[i]
is the parent for node i
. Since node 0
is the root, parents[0] == -1
.
There are 105
genetic values, each represented by an integer in the inclusive range [1, 105]
. You are given a 0-indexed integer array nums
, where nums[i]
is a distinct genetic value for node i
.
Return an array ans
of length n
where ans[i]
is the smallest genetic value that is missing from the subtree rooted at node i
.
The subtree rooted at a node x
contains node x
and all of its descendant nodes.
Example 1:
Input: parents = [-1,0,0,2], nums = [1,2,3,4]
Output: [5,1,1,1]
Explanation: The answer for each subtree is calculated as follows:
- 0: The subtree contains nodes [0,1,2,3] with values [1,2,3,4]. 5 is the smallest missing value.
- 1: The subtree contains only node 1 with value 2. 1 is the smallest missing value.
- 2: The subtree contains nodes [2,3] with values [3,4]. 1 is the smallest missing value.
- 3: The subtree contains only node 3 with value 4. 1 is the smallest missing value.
Example 2:
Input: parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3]
Output: [7,1,1,4,2,1]
Explanation: The answer for each subtree is calculated as follows:
- 0: The subtree contains nodes [0,1,2,3,4,5] with values [5,4,6,2,1,3]. 7 is the smallest missing value.
- 1: The subtree contains nodes [1,2] with values [4,6]. 1 is the smallest missing value.
- 2: The subtree contains only node 2 with value 6. 1 is the smallest missing value.
- 3: The subtree contains nodes [3,4,5] with values [2,1,3]. 4 is the smallest missing value.
- 4: The subtree contains only node 4 with value 1. 2 is the smallest missing value.
- 5: The subtree contains only node 5 with value 3. 1 is the smallest missing value.
Example 3:
Input: parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8]
Output: [1,1,1,1,1,1,1]
Explanation: The value 1 is missing from all the subtrees.
Constraints:
n == parents.length == nums.length
2 <= n <= 105
0 <= parents[i] <= n - 1
for i != 0
parents[0] == -1
parents
represents a valid tree.1 <= nums[i] <= 105
- Each
nums[i]
is distinct.
Solutions#
Solution 1: DFS#
We notice that each node has a unique gene value, so we only need to find the node $idx$ with gene value $1$, and all nodes except for those on the path from node $idx$ to the root node $0$ have an answer of $1$.
Therefore, we initialize the answer array $ans$ to $[1,1,…,1]$, and our focus is on finding the answer for each node on the path from node $idx$ to the root node $0$.
We can start from node $idx$ and use depth-first search to mark the gene values that appear in the subtree rooted at $idx$, and record them in the array $has$. During the search process, we use an array $vis$ to mark the visited nodes to prevent repeated visits.
Next, we start from $i=2$ and keep looking for the first gene value that has not appeared, which is the answer for node $idx$. Here, $i$ is strictly increasing, because the gene values are unique, so we can always find a gene value that has not appeared in $[1,..n+1]$.
Then, we update the answer for node $idx$, i.e., $ans[idx]=i$, and update $idx$ to its parent node to continue the above process until $idx=-1$, which means we have reached the root node $0$.
Finally, we return the answer array $ans$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| class Solution:
def smallestMissingValueSubtree(
self, parents: List[int], nums: List[int]
) -> List[int]:
def dfs(i: int):
if vis[i]:
return
vis[i] = True
if nums[i] < len(has):
has[nums[i]] = True
for j in g[i]:
dfs(j)
n = len(nums)
ans = [1] * n
g = [[] for _ in range(n)]
idx = -1
for i, p in enumerate(parents):
if i:
g[p].append(i)
if nums[i] == 1:
idx = i
if idx == -1:
return ans
vis = [False] * n
has = [False] * (n + 2)
i = 2
while idx != -1:
dfs(idx)
while has[i]:
i += 1
ans[idx] = i
idx = parents[idx]
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
| class Solution {
private List<Integer>[] g;
private boolean[] vis;
private boolean[] has;
private int[] nums;
public int[] smallestMissingValueSubtree(int[] parents, int[] nums) {
int n = nums.length;
this.nums = nums;
g = new List[n];
vis = new boolean[n];
has = new boolean[n + 2];
Arrays.setAll(g, i -> new ArrayList<>());
int idx = -1;
for (int i = 0; i < n; ++i) {
if (i > 0) {
g[parents[i]].add(i);
}
if (nums[i] == 1) {
idx = i;
}
}
int[] ans = new int[n];
Arrays.fill(ans, 1);
if (idx == -1) {
return ans;
}
for (int i = 2; idx != -1; idx = parents[idx]) {
dfs(idx);
while (has[i]) {
++i;
}
ans[idx] = i;
}
return ans;
}
private void dfs(int i) {
if (vis[i]) {
return;
}
vis[i] = true;
if (nums[i] < has.length) {
has[nums[i]] = true;
}
for (int j : g[i]) {
dfs(j);
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
| class Solution {
public:
vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) {
int n = nums.size();
vector<int> g[n];
bool vis[n];
bool has[n + 2];
memset(vis, false, sizeof(vis));
memset(has, false, sizeof(has));
int idx = -1;
for (int i = 0; i < n; ++i) {
if (i) {
g[parents[i]].push_back(i);
}
if (nums[i] == 1) {
idx = i;
}
}
vector<int> ans(n, 1);
if (idx == -1) {
return ans;
}
function<void(int)> dfs = [&](int i) {
if (vis[i]) {
return;
}
vis[i] = true;
if (nums[i] < n + 2) {
has[nums[i]] = true;
}
for (int j : g[i]) {
dfs(j);
}
};
for (int i = 2; ~idx; idx = parents[idx]) {
dfs(idx);
while (has[i]) {
++i;
}
ans[idx] = i;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
| func smallestMissingValueSubtree(parents []int, nums []int) []int {
n := len(nums)
g := make([][]int, n)
vis := make([]bool, n)
has := make([]bool, n+2)
idx := -1
ans := make([]int, n)
for i, p := range parents {
if i > 0 {
g[p] = append(g[p], i)
}
if nums[i] == 1 {
idx = i
}
ans[i] = 1
}
if idx < 0 {
return ans
}
var dfs func(int)
dfs = func(i int) {
if vis[i] {
return
}
vis[i] = true
if nums[i] < len(has) {
has[nums[i]] = true
}
for _, j := range g[i] {
dfs(j)
}
}
for i := 2; idx != -1; idx = parents[idx] {
dfs(idx)
for has[i] {
i++
}
ans[idx] = i
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| function smallestMissingValueSubtree(parents: number[], nums: number[]): number[] {
const n = nums.length;
const g: number[][] = Array.from({ length: n }, () => []);
const vis: boolean[] = Array(n).fill(false);
const has: boolean[] = Array(n + 2).fill(false);
const ans: number[] = Array(n).fill(1);
let idx = -1;
for (let i = 0; i < n; ++i) {
if (i) {
g[parents[i]].push(i);
}
if (nums[i] === 1) {
idx = i;
}
}
if (idx === -1) {
return ans;
}
const dfs = (i: number): void => {
if (vis[i]) {
return;
}
vis[i] = true;
if (nums[i] < has.length) {
has[nums[i]] = true;
}
for (const j of g[i]) {
dfs(j);
}
};
for (let i = 2; ~idx; idx = parents[idx]) {
dfs(idx);
while (has[i]) {
++i;
}
ans[idx] = i;
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
| impl Solution {
pub fn smallest_missing_value_subtree(parents: Vec<i32>, nums: Vec<i32>) -> Vec<i32> {
fn dfs(
i: usize,
vis: &mut Vec<bool>,
has: &mut Vec<bool>,
g: &Vec<Vec<usize>>,
nums: &Vec<i32>
) {
if vis[i] {
return;
}
vis[i] = true;
if nums[i] < (has.len() as i32) {
has[nums[i] as usize] = true;
}
for &j in &g[i] {
dfs(j, vis, has, g, nums);
}
}
let n = nums.len();
let mut ans = vec![1; n];
let mut g: Vec<Vec<usize>> = vec![vec![]; n];
let mut idx = -1;
for (i, &p) in parents.iter().enumerate() {
if i > 0 {
g[p as usize].push(i);
}
if nums[i] == 1 {
idx = i as i32;
}
}
if idx == -1 {
return ans;
}
let mut vis = vec![false; n];
let mut has = vec![false; (n + 2) as usize];
let mut i = 2;
let mut idx_mut = idx;
while idx_mut != -1 {
dfs(idx_mut as usize, &mut vis, &mut has, &g, &nums);
while has[i] {
i += 1;
}
ans[idx_mut as usize] = i as i32;
idx_mut = parents[idx_mut as usize];
}
ans
}
}
|