Description#
You are given an m x n
binary matrix grid
where each cell is either 0
(empty) or 1
(occupied).
You are then given stamps of size stampHeight x stampWidth
. We want to fit the stamps such that they follow the given restrictions and requirements:
- Cover all the empty cells.
- Do not cover any of the occupied cells.
- We can put as many stamps as we want.
- Stamps can overlap with each other.
- Stamps are not allowed to be rotated.
- Stamps must stay completely inside the grid.
Return true
if it is possible to fit the stamps while following the given restrictions and requirements. Otherwise, return false
.
Example 1:
Input: grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3
Output: true
Explanation: We have two overlapping stamps (labeled 1 and 2 in the image) that are able to cover all the empty cells.
Example 2:
Input: grid = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], stampHeight = 2, stampWidth = 2
Output: false
Explanation: There is no way to fit the stamps onto all the empty cells without the stamps going outside the grid.
Constraints:
m == grid.length
n == grid[r].length
1 <= m, n <= 105
1 <= m * n <= 2 * 105
grid[r][c]
is either 0
or 1
.1 <= stampHeight, stampWidth <= 105
Solutions#
Solution 1: Two-Dimensional Prefix Sum + Two-Dimensional Difference#
According to the problem description, every empty cell must be covered by a stamp, and no occupied cell can be covered. Therefore, we can traverse the two-dimensional matrix, and for each cell, if all cells in the area of $stampHeight \times stampWidth$ with this cell as the upper left corner are empty (i.e., not occupied), then we can place a stamp at this cell.
To quickly determine whether all cells in an area are empty, we can use a two-dimensional prefix sum. We use $s_{i,j}$ to represent the number of occupied cells in the sub-matrix from $(1,1)$ to $(i,j)$ in the two-dimensional matrix. That is, $s_{i, j} = s_{i - 1, j} + s_{i, j - 1} - s_{i - 1, j - 1} + grid_{i-1, j-1}$.
Then, with $(i, j)$ as the upper left corner, and the height and width are $stampHeight$ and $stampWidth$ respectively, the lower right coordinate of the sub-matrix is $(x, y) = (i + stampHeight - 1, j + stampWidth - 1)$. We can calculate the number of occupied cells in this sub-matrix through $s_{x, y} - s_{x, j - 1} - s_{i - 1, y} + s_{i - 1, j - 1}$. If the number of occupied cells in this sub-matrix is $0$, then we can place a stamp at $(i, j)$. After placing the stamp, all cells in this $stampHeight \times stampWidth$ area will become occupied cells. We can use a two-dimensional difference array $d$ to record this change. That is:
$$
\begin{aligned}
d_{i, j} &\leftarrow d_{i, j} + 1 \
d_{i, y + 1} &\leftarrow d_{i, y + 1} - 1 \
d_{x + 1, j} &\leftarrow d_{x + 1, j} - 1 \
d_{x + 1, y + 1} &\leftarrow d_{x + 1, y + 1} + 1
\end{aligned}
$$
Finally, we perform a prefix sum operation on the two-dimensional difference array $d$ to find out the number of times each cell is covered by a stamp. If a cell is not occupied and the number of times it is covered by a stamp is $0$, then we cannot place a stamp at this cell, so we need to return $\texttt{false}$. If all “unoccupied cells” are successfully covered by stamps, return $\texttt{true}$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the height and width of the two-dimensional matrix, respectively.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| class Solution:
def possibleToStamp(
self, grid: List[List[int]], stampHeight: int, stampWidth: int
) -> bool:
m, n = len(grid), len(grid[0])
s = [[0] * (n + 1) for _ in range(m + 1)]
for i, row in enumerate(grid, 1):
for j, v in enumerate(row, 1):
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + v
d = [[0] * (n + 2) for _ in range(m + 2)]
for i in range(1, m - stampHeight + 2):
for j in range(1, n - stampWidth + 2):
x, y = i + stampHeight - 1, j + stampWidth - 1
if s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0:
d[i][j] += 1
d[i][y + 1] -= 1
d[x + 1][j] -= 1
d[x + 1][y + 1] += 1
for i, row in enumerate(grid, 1):
for j, v in enumerate(row, 1):
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1]
if v == 0 and d[i][j] == 0:
return False
return True
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| class Solution {
public boolean possibleToStamp(int[][] grid, int stampHeight, int stampWidth) {
int m = grid.length, n = grid[0].length;
int[][] s = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
int[][] d = new int[m + 2][n + 2];
for (int i = 1; i + stampHeight - 1 <= m; ++i) {
for (int j = 1; j + stampWidth - 1 <= n; ++j) {
int x = i + stampHeight - 1, y = j + stampWidth - 1;
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] == 0 && d[i][j] == 0) {
return false;
}
}
}
return true;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
| class Solution {
public:
bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> s(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
vector<vector<int>> d(m + 2, vector<int>(n + 2));
for (int i = 1; i + stampHeight - 1 <= m; ++i) {
for (int j = 1; j + stampWidth - 1 <= n; ++j) {
int x = i + stampHeight - 1, y = j + stampWidth - 1;
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] == 0 && d[i][j] == 0) {
return false;
}
}
}
return true;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| func possibleToStamp(grid [][]int, stampHeight int, stampWidth int) bool {
m, n := len(grid), len(grid[0])
s := make([][]int, m+1)
for i := range s {
s[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + grid[i-1][j-1]
}
}
d := make([][]int, m+2)
for i := range d {
d[i] = make([]int, n+2)
}
for i := 1; i+stampHeight-1 <= m; i++ {
for j := 1; j+stampWidth-1 <= n; j++ {
x, y := i+stampHeight-1, j+stampWidth-1
if s[x][y]-s[x][j-1]-s[i-1][y]+s[i-1][j-1] == 0 {
d[i][j]++
d[i][y+1]--
d[x+1][j]--
d[x+1][y+1]++
}
}
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
d[i][j] += d[i-1][j] + d[i][j-1] - d[i-1][j-1]
if grid[i-1][j-1] == 0 && d[i][j] == 0 {
return false
}
}
}
return true
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| function possibleToStamp(grid: number[][], stampHeight: number, stampWidth: number): boolean {
const m = grid.length;
const n = grid[0].length;
const s: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
const d: number[][] = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
for (let i = 1; i + stampHeight - 1 <= m; ++i) {
for (let j = 1; j + stampWidth - 1 <= n; ++j) {
const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
return false;
}
}
}
return true;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
| impl Solution {
pub fn possible_to_stamp(grid: Vec<Vec<i32>>, stamp_height: i32, stamp_width: i32) -> bool {
let n: usize = grid.len();
let m: usize = grid[0].len();
let mut prefix_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
// Initialize the prefix vector
for i in 0..n {
for j in 0..m {
prefix_vec[i + 1][j + 1] =
prefix_vec[i][j + 1] + prefix_vec[i + 1][j] - prefix_vec[i][j] + grid[i][j];
}
}
let mut diff_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
// Construct the difference vector based on prefix sum vector
for i in 0..n {
for j in 0..m {
// If the value of the cell is one, just bypass this
if grid[i][j] == 1 {
continue;
}
// Otherwise, try stick the stamp
let x: usize = i + (stamp_height as usize);
let y: usize = j + (stamp_width as usize);
// Check the bound
if x <= n && y <= m {
// If the region can be sticked (All cells are empty, which means the sum will be zero)
if
prefix_vec[x][y] - prefix_vec[x][j] - prefix_vec[i][y] + prefix_vec[i][j] ==
0
{
// Update the difference vector
diff_vec[i][j] += 1;
diff_vec[x][y] += 1;
diff_vec[x][j] -= 1;
diff_vec[i][y] -= 1;
}
}
}
}
let mut check_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];
// Check the prefix sum of difference vector, to determine if there is any empty cell left
for i in 0..n {
for j in 0..m {
// If the value of the cell is one, just bypass this
if grid[i][j] == 1 {
continue;
}
// Otherwise, check if the region is empty, by calculating the prefix sum of difference vector
check_vec[i + 1][j + 1] =
check_vec[i][j + 1] + check_vec[i + 1][j] - check_vec[i][j] + diff_vec[i][j];
if check_vec[i + 1][j + 1] == 0 {
return false;
}
}
}
true
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| /**
* @param {number[][]} grid
* @param {number} stampHeight
* @param {number} stampWidth
* @return {boolean}
*/
var possibleToStamp = function (grid, stampHeight, stampWidth) {
const m = grid.length;
const n = grid[0].length;
const s = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
}
}
const d = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
for (let i = 1; i + stampHeight - 1 <= m; ++i) {
for (let j = 1; j + stampWidth - 1 <= n; ++j) {
const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
d[i][j]++;
d[i][y + 1]--;
d[x + 1][j]--;
d[x + 1][y + 1]++;
}
}
}
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
return false;
}
}
}
return true;
};
|