1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
| """
DP, Z-algorithm, Fast mod.
Approach
How to represent a string?
Each operation is just a rotation. Each result string can be represented by an integer from 0 to n - 1. Namely, it's just the new index of s[0].
How to find the integer(s) that can represent string t?
Create a new string s + t + t (length = 3 * n).
Use Z-algorithm (or KMP), for each n <= index < 2 * n, calculate the maximum prefix length that each substring starts from index can match, if the length >= n, then (index - n) is a valid integer representation.
How to get the result?
It's a very obvious DP.
If we use an integer to represent a string, we only need to consider the transition from zero to non-zero and from non-zero to zero. In other words, all the non-zero strings should have the same result.
So let dp[t][i = 0/1] be the number of ways to get the zero/nonzero string
after excatly t steps.
Then
dp[t][0] = dp[t - 1][1] * (n - 1).
All the non zero strings can make it.
dp[t][1] = dp[t - 1][0] + dp[t - 1] * (n - 2).
For a particular non zero string, all the other non zero strings and zero string can make it.
We have dp[0][0] = 1 and dp[0][1] = 0
Use matrix multiplication.
How to calculate dp[k][x = 0, 1] faster?
Use matrix multiplication
vector (dp[t - 1][0], dp[t - 1][1])
multiplies matrix
[0 1]
[n - 1 n - 2]
== vector (dp[t][0], dp[t - 1][1]).
So we just need to calculate the kth power of the matrix which can be done by fast power algorith.
Complexity
Time complexity:
O(n + logk)
Space complexity:
O(n)
"""
class Solution:
M: int = 1000000007
def add(self, x: int, y: int) -> int:
x += y
if x >= self.M:
x -= self.M
return x
def mul(self, x: int, y: int) -> int:
return int(x * y % self.M)
def getZ(self, s: str) -> List[int]:
n = len(s)
z = [0] * n
left = right = 0
for i in range(1, n):
if i <= right and z[i - left] <= right - i:
z[i] = z[i - left]
else:
z_i = max(0, right - i + 1)
while i + z_i < n and s[i + z_i] == s[z_i]:
z_i += 1
z[i] = z_i
if i + z[i] - 1 > right:
left = i
right = i + z[i] - 1
return z
def matrixMultiply(self, a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
m = len(a)
n = len(a[0])
p = len(b[0])
r = [[0] * p for _ in range(m)]
for i in range(m):
for j in range(p):
for k in range(n):
r[i][j] = self.add(r[i][j], self.mul(a[i][k], b[k][j]))
return r
def matrixPower(self, a: List[List[int]], y: int) -> List[List[int]]:
n = len(a)
r = [[0] * n for _ in range(n)]
for i in range(n):
r[i][i] = 1
x = [a[i][:] for i in range(n)]
while y > 0:
if y & 1:
r = self.matrixMultiply(r, x)
x = self.matrixMultiply(x, x)
y >>= 1
return r
def numberOfWays(self, s: str, t: str, k: int) -> int:
n = len(s)
dp = self.matrixPower([[0, 1], [n - 1, n - 2]], k)[0]
s += t + t
z = self.getZ(s)
m = n + n
result = 0
for i in range(n, m):
if z[i] >= n:
result = self.add(result, dp[0] if i - n == 0 else dp[1])
return result
|