Description#
Given an array of integers nums
and an integer k
, return the total number of subarrays whose sum equals to k
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,1,1], k = 2
Output: 2
Example 2:
Input: nums = [1,2,3], k = 3
Output: 2
Constraints:
1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-107 <= k <= 107
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
| class Solution:
def subarraySum(self, nums: List[int], k: int) -> int:
counter = Counter({0: 1})
ans = s = 0
for num in nums:
s += num
ans += counter[s - k]
counter[s] += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution {
public int subarraySum(int[] nums, int k) {
Map<Integer, Integer> counter = new HashMap<>();
counter.put(0, 1);
int ans = 0, s = 0;
for (int num : nums) {
s += num;
ans += counter.getOrDefault(s - k, 0);
counter.put(s, counter.getOrDefault(s, 0) + 1);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
unordered_map<int, int> counter;
counter[0] = 1;
int ans = 0, s = 0;
for (int& num : nums) {
s += num;
ans += counter[s - k];
++counter[s];
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
| func subarraySum(nums []int, k int) int {
counter := map[int]int{0: 1}
ans, s := 0, 0
for _, num := range nums {
s += num
ans += counter[s-k]
counter[s]++
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| function subarraySum(nums: number[], k: number): number {
let ans = 0,
s = 0;
const counter = new Map();
counter.set(0, 1);
for (const num of nums) {
s += num;
ans += counter.get(s - k) || 0;
counter.set(s, (counter.get(s) || 0) + 1);
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| impl Solution {
pub fn subarray_sum(mut nums: Vec<i32>, k: i32) -> i32 {
let n = nums.len();
let mut count = 0;
for i in 0..n {
let num = nums[i];
if num == k {
count += 1;
}
for j in 0..i {
nums[j] += num;
if nums[j] == k {
count += 1;
}
}
}
count
}
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| use std::collections::HashMap;
impl Solution {
pub fn subarray_sum(nums: Vec<i32>, k: i32) -> i32 {
let mut res = 0;
let mut sum = 0;
let mut map = HashMap::new();
map.insert(0, 1);
nums.iter().for_each(|num| {
sum += num;
res += map.get(&(sum - k)).unwrap_or(&0);
map.insert(sum, map.get(&sum).unwrap_or(&0) + 1);
});
res
}
}
|