Description#
You are given a string s
and an array of strings words
. All the strings of words
are of the same length.
A concatenated substring in s
is a substring that contains all the strings of any permutation of words
concatenated.
- For example, if
words = ["ab","cd","ef"]
, then "abcdef"
, "abefcd"
, "cdabef"
, "cdefab"
, "efabcd"
, and "efcdab"
are all concatenated strings. "acdbef"
is not a concatenated substring because it is not the concatenation of any permutation of words
.
Return the starting indices of all the concatenated substrings in s
. You can return the answer in any order.
Example 1:
Input: s = "barfoothefoobarman", words = ["foo","bar"]
Output: [0,9]
Explanation: Since words.length == 2 and words[i].length == 3, the concatenated substring has to be of length 6.
The substring starting at 0 is "barfoo". It is the concatenation of ["bar","foo"] which is a permutation of words.
The substring starting at 9 is "foobar". It is the concatenation of ["foo","bar"] which is a permutation of words.
The output order does not matter. Returning [9,0] is fine too.
Example 2:
Input: s = "wordgoodgoodgoodbestword", words = ["word","good","best","word"]
Output: []
Explanation: Since words.length == 4 and words[i].length == 4, the concatenated substring has to be of length 16.
There is no substring of length 16 in s that is equal to the concatenation of any permutation of words.
We return an empty array.
Example 3:
Input: s = "barfoofoobarthefoobarman", words = ["bar","foo","the"]
Output: [6,9,12]
Explanation: Since words.length == 3 and words[i].length == 3, the concatenated substring has to be of length 9.
The substring starting at 6 is "foobarthe". It is the concatenation of ["foo","bar","the"] which is a permutation of words.
The substring starting at 9 is "barthefoo". It is the concatenation of ["bar","the","foo"] which is a permutation of words.
The substring starting at 12 is "thefoobar". It is the concatenation of ["the","foo","bar"] which is a permutation of words.
Constraints:
1 <= s.length <= 104
1 <= words.length <= 5000
1 <= words[i].length <= 30
s
and words[i]
consist of lowercase English letters.
Solutions#
Solution 1: Hash Table + Sliding Window#
We use a hash table $cnt$ to count the number of times each word appears in $words$, and use a hash table $cnt1$ to count the number of times each word appears in the current sliding window. We denote the length of the string $s$ as $m$, the number of words in the string array $words$ as $n$, and the length of each word as $k$.
We can enumerate the starting point $i$ of the sliding window, where $0 \lt i < k$. For each starting point, we maintain a sliding window with the left boundary as $l$, the right boundary as $r$, and the number of words in the sliding window as $t$. Additionally, we use a hash table $cnt1$ to count the number of times each word appears in the sliding window.
Each time, we extract the string $s[r:r+k]$. If $s[r:r+k]$ is not in the hash table $cnt$, it means that the words in the current sliding window are not valid. We update the left boundary $l$ to $r$, clear the hash table $cnt1$, and reset the word count $t$ to 0. If $s[r:r+k]$ is in the hash table $cnt$, it means that the words in the current sliding window are valid. We increase the word count $t$ by 1, and increase the count of $s[r:r+k]$ in the hash table $cnt1$ by 1. If $cnt1[s[r:r+k]]$ is greater than $cnt[s[r:r+k]]$, it means that $s[r:r+k]$ appears too many times in the current sliding window. We need to move the left boundary $l$ to the right until $cnt1[s[r:r+k]] = cnt[s[r:r+k]]$. If $t = n$, it means that the words in the current sliding window are exactly valid, and we add the left boundary $l$ to the answer array.
The time complexity is $O(m \times k)$, and the space complexity is $O(n \times k)$. Here, $m$ and $n$ are the lengths of the string $s$ and the string array $words$ respectively, and $k$ is the length of the words in the string array $words$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| class Solution:
def findSubstring(self, s: str, words: List[str]) -> List[int]:
cnt = Counter(words)
m, n = len(s), len(words)
k = len(words[0])
ans = []
for i in range(k):
cnt1 = Counter()
l = r = i
t = 0
while r + k <= m:
w = s[r : r + k]
r += k
if w not in cnt:
l = r
cnt1.clear()
t = 0
continue
cnt1[w] += 1
t += 1
while cnt1[w] > cnt[w]:
remove = s[l : l + k]
l += k
cnt1[remove] -= 1
t -= 1
if t == n:
ans.append(l)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
| class Solution {
public List<Integer> findSubstring(String s, String[] words) {
Map<String, Integer> cnt = new HashMap<>();
for (String w : words) {
cnt.merge(w, 1, Integer::sum);
}
int m = s.length(), n = words.length;
int k = words[0].length();
List<Integer> ans = new ArrayList<>();
for (int i = 0; i < k; ++i) {
Map<String, Integer> cnt1 = new HashMap<>();
int l = i, r = i;
int t = 0;
while (r + k <= m) {
String w = s.substring(r, r + k);
r += k;
if (!cnt.containsKey(w)) {
cnt1.clear();
l = r;
t = 0;
continue;
}
cnt1.merge(w, 1, Integer::sum);
++t;
while (cnt1.get(w) > cnt.get(w)) {
String remove = s.substring(l, l + k);
l += k;
cnt1.merge(remove, -1, Integer::sum);
--t;
}
if (t == n) {
ans.add(l);
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
| class Solution {
public:
vector<int> findSubstring(string s, vector<string>& words) {
unordered_map<string, int> cnt;
for (auto& w : words) {
++cnt[w];
}
int m = s.size(), n = words.size(), k = words[0].size();
vector<int> ans;
for (int i = 0; i < k; ++i) {
unordered_map<string, int> cnt1;
int l = i, r = i;
int t = 0;
while (r + k <= m) {
string w = s.substr(r, k);
r += k;
if (!cnt.count(w)) {
cnt1.clear();
l = r;
t = 0;
continue;
}
++cnt1[w];
++t;
while (cnt1[w] > cnt[w]) {
string remove = s.substr(l, k);
l += k;
--cnt1[remove];
--t;
}
if (t == n) {
ans.push_back(l);
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
| func findSubstring(s string, words []string) (ans []int) {
cnt := map[string]int{}
for _, w := range words {
cnt[w]++
}
m, n, k := len(s), len(words), len(words[0])
for i := 0; i < k; i++ {
cnt1 := map[string]int{}
l, r, t := i, i, 0
for r+k <= m {
w := s[r : r+k]
r += k
if _, ok := cnt[w]; !ok {
l, t = r, 0
cnt1 = map[string]int{}
continue
}
cnt1[w]++
t++
for cnt1[w] > cnt[w] {
cnt1[s[l:l+k]]--
l += k
t--
}
if t == n {
ans = append(ans, l)
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
| function findSubstring(s: string, words: string[]): number[] {
const cnt: Map<string, number> = new Map();
for (const w of words) {
cnt.set(w, (cnt.get(w) || 0) + 1);
}
const m = s.length;
const n = words.length;
const k = words[0].length;
const ans: number[] = [];
for (let i = 0; i < k; ++i) {
const cnt1: Map<string, number> = new Map();
let l = i;
let r = i;
let t = 0;
while (r + k <= m) {
const w = s.slice(r, r + k);
r += k;
if (!cnt.has(w)) {
cnt1.clear();
l = r;
t = 0;
continue;
}
cnt1.set(w, (cnt1.get(w) || 0) + 1);
++t;
while (cnt1.get(w)! - cnt.get(w)! > 0) {
const remove = s.slice(l, l + k);
cnt1.set(remove, cnt1.get(remove)! - 1);
l += k;
--t;
}
if (t === n) {
ans.push(l);
}
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
| public class Solution {
public IList<int> FindSubstring(string s, string[] words) {
var cnt = new Dictionary<string, int>();
foreach (var w in words) {
if (!cnt.ContainsKey(w)) {
cnt[w] = 0;
}
++cnt[w];
}
int m = s.Length, n = words.Length, k = words[0].Length;
var ans = new List<int>();
for (int i = 0; i < k; ++i) {
var cnt1 = new Dictionary<string, int>();
int l = i, r = i, t = 0;
while (r + k <= m) {
var w = s.Substring(r, k);
r += k;
if (!cnt.ContainsKey(w)) {
cnt1.Clear();
t = 0;
l = r;
continue;
}
if (!cnt1.ContainsKey(w)) {
cnt1[w] = 0;
}
++cnt1[w];
++t;
while (cnt1[w] > cnt[w]) {
--cnt1[s.Substring(l, k)];
l += k;
--t;
}
if (t == n) {
ans.Add(l);
}
}
}
return ans;
}
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| class Solution {
public:
vector<int> findSubstring(string s, vector<string>& words) {
unordered_map<string, int> d;
for (auto& w : words) ++d[w];
vector<int> ans;
int n = s.size(), m = words.size(), k = words[0].size();
for (int i = 0; i < k; ++i) {
int cnt = 0;
unordered_map<string, int> t;
for (int j = i; j <= n; j += k) {
if (j - i >= m * k) {
auto s1 = s.substr(j - m * k, k);
--t[s1];
cnt -= d[s1] > t[s1];
}
auto s2 = s.substr(j, k);
++t[s2];
cnt += d[s2] >= t[s2];
if (cnt == m) ans.emplace_back(j - (m - 1) * k);
}
}
return ans;
}
};
|