Description#
Given two integers num
and k
, consider a set of positive integers with the following properties:
- The units digit of each integer is
k
. - The sum of the integers is
num
.
Return the minimum possible size of such a set, or -1
if no such set exists.
Note:
- The set can contain multiple instances of the same integer, and the sum of an empty set is considered
0
. - The units digit of a number is the rightmost digit of the number.
Example 1:
Input: num = 58, k = 9
Output: 2
Explanation:
One valid set is [9,49], as the sum is 58 and each integer has a units digit of 9.
Another valid set is [19,39].
It can be shown that 2 is the minimum possible size of a valid set.
Example 2:
Input: num = 37, k = 2
Output: -1
Explanation: It is not possible to obtain a sum of 37 using only integers that have a units digit of 2.
Example 3:
Input: num = 0, k = 7
Output: 0
Explanation: The sum of an empty set is considered 0.
Constraints:
0 <= num <= 3000
0 <= k <= 9
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
| class Solution:
def minimumNumbers(self, num: int, k: int) -> int:
if num == 0:
return 0
for i in range(1, num + 1):
if (t := num - k * i) >= 0 and t % 10 == 0:
return i
return -1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public int minimumNumbers(int num, int k) {
if (num == 0) {
return 0;
}
for (int i = 1; i <= num; ++i) {
int t = num - k * i;
if (t >= 0 && t % 10 == 0) {
return i;
}
}
return -1;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public:
int minimumNumbers(int num, int k) {
if (num == 0) return 0;
for (int i = 1; i <= num; ++i) {
int t = num - k * i;
if (t >= 0 && t % 10 == 0) return i;
}
return -1;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
| func minimumNumbers(num int, k int) int {
if num == 0 {
return 0
}
for i := 1; i <= num; i++ {
t := num - k*i
if t >= 0 && t%10 == 0 {
return i
}
}
return -1
}
|
1
2
3
4
5
6
7
8
9
| function minimumNumbers(num: number, k: number): number {
if (!num) return 0;
let digit = num % 10;
for (let i = 1; i < 11; i++) {
let target = i * k;
if (target <= num && target % 10 == digit) return i;
}
return -1;
}
|
Solution 2#
1
2
3
4
5
6
7
8
| class Solution:
def minimumNumbers(self, num: int, k: int) -> int:
if num == 0:
return 0
for i in range(1, 11):
if (k * i) % 10 == num % 10 and k * i <= num:
return i
return -1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution {
public int minimumNumbers(int num, int k) {
if (num == 0) {
return 0;
}
for (int i = 1; i <= 10; ++i) {
if ((k * i) % 10 == num % 10 && k * i <= num) {
return i;
}
}
return -1;
}
}
|
1
2
3
4
5
6
7
8
9
10
| class Solution {
public:
int minimumNumbers(int num, int k) {
if (!num) return 0;
for (int i = 1; i <= 10; ++i)
if ((k * i) % 10 == num % 10 && k * i <= num)
return i;
return -1;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
| func minimumNumbers(num int, k int) int {
if num == 0 {
return 0
}
for i := 1; i <= 10; i++ {
if (k*i)%10 == num%10 && k*i <= num {
return i
}
}
return -1
}
|
Solution 3#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution:
def minimumNumbers(self, num: int, k: int) -> int:
@cache
def dfs(v):
if v == 0:
return 0
if v < 10 and v % k:
return inf
i = 0
t = inf
while (x := i * 10 + k) <= v:
t = min(t, dfs(v - x))
i += 1
return t + 1
if num == 0:
return 0
if k == 0:
return -1 if num % 10 else 1
ans = dfs(num)
return -1 if ans >= inf else ans
|