Description#
Given a non-negative integer c
, decide whether there're two integers a
and b
such that a2 + b2 = c
.
Example 1:
Input: c = 5
Output: true
Explanation: 1 * 1 + 2 * 2 = 5
Example 2:
Input: c = 3
Output: false
Constraints:
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution:
def judgeSquareSum(self, c: int) -> bool:
a, b = 0, int(sqrt(c))
while a <= b:
s = a**2 + b**2
if s == c:
return True
if s < c:
a += 1
else:
b -= 1
return False
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
public boolean judgeSquareSum(int c) {
long a = 0, b = (long) Math.sqrt(c);
while (a <= b) {
long s = a * a + b * b;
if (s == c) {
return true;
}
if (s < c) {
++a;
} else {
--b;
}
}
return false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public:
bool judgeSquareSum(int c) {
long a = 0, b = (long) sqrt(c);
while (a <= b) {
long s = a * a + b * b;
if (s == c) return true;
if (s < c)
++a;
else
--b;
}
return false;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| func judgeSquareSum(c int) bool {
a, b := 0, int(math.Sqrt(float64(c)))
for a <= b {
s := a*a + b*b
if s == c {
return true
}
if s < c {
a++
} else {
b--
}
}
return false
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function judgeSquareSum(c: number): boolean {
let a = 0,
b = Math.floor(Math.sqrt(c));
while (a <= b) {
let sum = a ** 2 + b ** 2;
if (sum == c) return true;
if (sum < c) {
++a;
} else {
--b;
}
}
return false;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| use std::cmp::Ordering;
impl Solution {
pub fn judge_square_sum(c: i32) -> bool {
let c = c as i64;
let mut left = 0;
let mut right = (c as f64).sqrt() as i64;
while left <= right {
let num = left * left + right * right;
match num.cmp(&c) {
Ordering::Less => {
left += 1;
}
Ordering::Greater => {
right -= 1;
}
Ordering::Equal => {
return true;
}
}
}
false
}
}
|