Description#
You are given a string s
that contains digits 0-9
, addition symbols '+'
, and multiplication symbols '*'
only, representing a valid math expression of single digit numbers (e.g., 3+5*2
). This expression was given to n
elementary school students. The students were instructed to get the answer of the expression by following this order of operations:
- Compute multiplication, reading from left to right; Then,
- Compute addition, reading from left to right.
You are given an integer array answers
of length n
, which are the submitted answers of the students in no particular order. You are asked to grade the answers
, by following these rules:
- If an answer equals the correct answer of the expression, this student will be rewarded
5
points; - Otherwise, if the answer could be interpreted as if the student applied the operators in the wrong order but had correct arithmetic, this student will be rewarded
2
points; - Otherwise, this student will be rewarded
0
points.
Return the sum of the points of the students.
Example 1:
Input: s = "7+3*1*2", answers = [20,13,42]
Output: 7
Explanation: As illustrated above, the correct answer of the expression is 13, therefore one student is rewarded 5 points: [20,13,42]
A student might have applied the operators in this wrong order: ((7+3)*1)*2 = 20. Therefore one student is rewarded 2 points: [20,13,42]
The points for the students are: [2,5,0]. The sum of the points is 2+5+0=7.
Example 2:
Input: s = "3+5*2", answers = [13,0,10,13,13,16,16]
Output: 19
Explanation: The correct answer of the expression is 13, therefore three students are rewarded 5 points each: [13,0,10,13,13,16,16]
A student might have applied the operators in this wrong order: ((3+5)*2 = 16. Therefore two students are rewarded 2 points: [13,0,10,13,13,16,16]
The points for the students are: [5,0,0,5,5,2,2]. The sum of the points is 5+0+0+5+5+2+2=19.
Example 3:
Input: s = "6+0*1", answers = [12,9,6,4,8,6]
Output: 10
Explanation: The correct answer of the expression is 6.
If a student had incorrectly done (6+0)*1, the answer would also be 6.
By the rules of grading, the students will still be rewarded 5 points (as they got the correct answer), not 2 points.
The points for the students are: [0,0,5,0,0,5]. The sum of the points is 10.
Constraints:
3 <= s.length <= 31
s
represents a valid expression that contains only digits 0-9
, '+'
, and '*'
only.- All the integer operands in the expression are in the inclusive range
[0, 9]
. 1 <=
The count of all operators ('+'
and '*'
) in the math expression <= 15
- Test data are generated such that the correct answer of the expression is in the range of
[0, 1000]
. n == answers.length
1 <= n <= 104
0 <= answers[i] <= 1000
Solutions#
Solution 1: Dynamic Programming (Interval DP)#
First, we design a function $cal(s)$ to calculate the result of a valid mathematical expression that only contains single-digit numbers. The correct answer is $x = cal(s)$.
Let the length of the string $s$ be $n$, then the number of digits in $s$ is $m = \frac{n+1}{2}$.
We define $f[i][j]$ as the possible values of the result calculated by selecting the digits from the $i$-th to the $j$-th in $s$ (index starts from $0$). Initially, $f[i][i]$ represents the selection of the $i$-th digit, and the result can only be this digit itself, i.e., $f[i][i] = {s[i \times 2]}$ (the $i$-th digit maps to the character at index $i \times 2$ in the string $s$).
Next, we enumerate $i$ from large to small, and then enumerate $j$ from small to large. We need to find out the possible values of the results of the operation of all digits in the interval $[i, j]$. We enumerate the boundary point $k$ in the interval $[i, j]$, then $f[i][j]$ can be obtained from $f[i][k]$ and $f[k+1][j]$ through the operator $s[k \times 2 + 1]$. Therefore, we can get the following state transition equation:
$$
f[i][j] = \begin{cases}
{s[i \times 2]}, & i = j \
\bigcup\limits_{k=i}^{j-1} {f[i][k] \otimes f[k+1][j]}, & i < j
\end{cases}
$$
Where $\otimes$ represents the operator, i.e., $s[k \times 2 + 1]$.
The possible values of the results of all digit operations in the string $s$ are $f[0][m-1]$.
Finally, we count the answer. We use an array $cnt$ to count the number of times each answer appears in the answer array $answers$. If the answer is equal to $x$, then this student gets $5$ points, otherwise if the answer is in $f[0][m-1]$, then this student gets $2$ points. Traverse $cnt$ to count the answer.
The time complexity is $O(n^3 \times M^2)$, and the space complexity is $O(n^2 \times M^2)$. Here, $M$ is the maximum possible value of the answer, and $n$ is the number of digits in the length of the string $s$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| class Solution:
def scoreOfStudents(self, s: str, answers: List[int]) -> int:
def cal(s: str) -> int:
res, pre = 0, int(s[0])
for i in range(1, n, 2):
if s[i] == "*":
pre *= int(s[i + 1])
else:
res += pre
pre = int(s[i + 1])
res += pre
return res
n = len(s)
x = cal(s)
m = (n + 1) >> 1
f = [[set() for _ in range(m)] for _ in range(m)]
for i in range(m):
f[i][i] = {int(s[i << 1])}
for i in range(m - 1, -1, -1):
for j in range(i, m):
for k in range(i, j):
for l in f[i][k]:
for r in f[k + 1][j]:
if s[k << 1 | 1] == "+" and l + r <= 1000:
f[i][j].add(l + r)
elif s[k << 1 | 1] == "*" and l * r <= 1000:
f[i][j].add(l * r)
cnt = Counter(answers)
ans = cnt[x] * 5
for k, v in cnt.items():
if k != x and k in f[0][m - 1]:
ans += v << 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
| class Solution {
public int scoreOfStudents(String s, int[] answers) {
int n = s.length();
int x = cal(s);
int m = (n + 1) >> 1;
Set<Integer>[][] f = new Set[m][m];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < m; ++j) {
f[i][j] = new HashSet<>();
}
f[i][i].add(s.charAt(i << 1) - '0');
}
for (int i = m - 1; i >= 0; --i) {
for (int j = i; j < m; ++j) {
for (int k = i; k < j; ++k) {
for (int l : f[i][k]) {
for (int r : f[k + 1][j]) {
char op = s.charAt(k << 1 | 1);
if (op == '+' && l + r <= 1000) {
f[i][j].add(l + r);
} else if (op == '*' && l * r <= 1000) {
f[i][j].add(l * r);
}
}
}
}
}
}
int[] cnt = new int[1001];
for (int ans : answers) {
++cnt[ans];
}
int ans = 5 * cnt[x];
for (int i = 0; i <= 1000; ++i) {
if (i != x && f[0][m - 1].contains(i)) {
ans += 2 * cnt[i];
}
}
return ans;
}
private int cal(String s) {
int res = 0, pre = s.charAt(0) - '0';
for (int i = 1; i < s.length(); i += 2) {
char op = s.charAt(i);
int cur = s.charAt(i + 1) - '0';
if (op == '*') {
pre *= cur;
} else {
res += pre;
pre = cur;
}
}
res += pre;
return res;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
| class Solution {
public:
int scoreOfStudents(string s, vector<int>& answers) {
int n = s.size();
int x = cal(s);
int m = (n + 1) >> 1;
unordered_set<int> f[m][m];
for (int i = 0; i < m; ++i) {
f[i][i] = {s[i * 2] - '0'};
}
for (int i = m - 1; ~i; --i) {
for (int j = i; j < m; ++j) {
for (int k = i; k < j; ++k) {
for (int l : f[i][k]) {
for (int r : f[k + 1][j]) {
char op = s[k << 1 | 1];
if (op == '+' && l + r <= 1000) {
f[i][j].insert(l + r);
} else if (op == '*' && l * r <= 1000) {
f[i][j].insert(l * r);
}
}
}
}
}
}
int cnt[1001]{};
for (int t : answers) {
++cnt[t];
}
int ans = 5 * cnt[x];
for (int i = 0; i <= 1000; ++i) {
if (i != x && f[0][m - 1].count(i)) {
ans += cnt[i] << 1;
}
}
return ans;
}
int cal(string& s) {
int res = 0;
int pre = s[0] - '0';
for (int i = 1; i < s.size(); i += 2) {
int cur = s[i + 1] - '0';
if (s[i] == '*') {
pre *= cur;
} else {
res += pre;
pre = cur;
}
}
res += pre;
return res;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
| func scoreOfStudents(s string, answers []int) int {
n := len(s)
x := cal(s)
m := (n + 1) >> 1
f := make([][]map[int]bool, m)
for i := range f {
f[i] = make([]map[int]bool, m)
for j := range f[i] {
f[i][j] = make(map[int]bool)
}
f[i][i][int(s[i<<1]-'0')] = true
}
for i := m - 1; i >= 0; i-- {
for j := i; j < m; j++ {
for k := i; k < j; k++ {
for l := range f[i][k] {
for r := range f[k+1][j] {
op := s[k<<1|1]
if op == '+' && l+r <= 1000 {
f[i][j][l+r] = true
} else if op == '*' && l*r <= 1000 {
f[i][j][l*r] = true
}
}
}
}
}
}
cnt := [1001]int{}
for _, v := range answers {
cnt[v]++
}
ans := cnt[x] * 5
for k, v := range cnt {
if k != x && f[0][m-1][k] {
ans += v << 1
}
}
return ans
}
func cal(s string) int {
res, pre := 0, int(s[0]-'0')
for i := 1; i < len(s); i += 2 {
cur := int(s[i+1] - '0')
if s[i] == '+' {
res += pre
pre = cur
} else {
pre *= cur
}
}
res += pre
return res
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
| function scoreOfStudents(s: string, answers: number[]): number {
const n = s.length;
const cal = (s: string): number => {
let res = 0;
let pre = s.charCodeAt(0) - '0'.charCodeAt(0);
for (let i = 1; i < s.length; i += 2) {
const cur = s.charCodeAt(i + 1) - '0'.charCodeAt(0);
if (s[i] === '+') {
res += pre;
pre = cur;
} else {
pre *= cur;
}
}
res += pre;
return res;
};
const x = cal(s);
const m = (n + 1) >> 1;
const f: Set<number>[][] = Array(m)
.fill(0)
.map(() =>
Array(m)
.fill(0)
.map(() => new Set()),
);
for (let i = 0; i < m; ++i) {
f[i][i].add(s[i << 1].charCodeAt(0) - '0'.charCodeAt(0));
}
for (let i = m - 1; i >= 0; --i) {
for (let j = i; j < m; ++j) {
for (let k = i; k < j; ++k) {
for (const l of f[i][k]) {
for (const r of f[k + 1][j]) {
const op = s[(k << 1) + 1];
if (op === '+' && l + r <= 1000) {
f[i][j].add(l + r);
} else if (op === '*' && l * r <= 1000) {
f[i][j].add(l * r);
}
}
}
}
}
}
const cnt: number[] = Array(1001).fill(0);
for (const v of answers) {
++cnt[v];
}
let ans = cnt[x] * 5;
for (let i = 0; i <= 1000; ++i) {
if (i !== x && f[0][m - 1].has(i)) {
ans += cnt[i] << 1;
}
}
return ans;
}
|