Description#
Given an m x n
integer matrix heightMap
representing the height of each unit cell in a 2D elevation map, return the volume of water it can trap after raining.
Example 1:
Input: heightMap = [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]]
Output: 4
Explanation: After the rain, water is trapped between the blocks.
We have two small ponds 1 and 3 units trapped.
The total volume of water trapped is 4.
Example 2:
Input: heightMap = [[3,3,3,3,3],[3,2,2,2,3],[3,2,1,2,3],[3,2,2,2,3],[3,3,3,3,3]]
Output: 10
Constraints:
m == heightMap.length
n == heightMap[i].length
1 <= m, n <= 200
0 <= heightMap[i][j] <= 2 * 104
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution:
def trapRainWater(self, heightMap: List[List[int]]) -> int:
m, n = len(heightMap), len(heightMap[0])
vis = [[False] * n for _ in range(m)]
pq = []
for i in range(m):
for j in range(n):
if i == 0 or i == m - 1 or j == 0 or j == n - 1:
heappush(pq, (heightMap[i][j], i, j))
vis[i][j] = True
ans = 0
dirs = (-1, 0, 1, 0, -1)
while pq:
h, i, j = heappop(pq)
for a, b in pairwise(dirs):
x, y = i + a, j + b
if x >= 0 and x < m and y >= 0 and y < n and not vis[x][y]:
ans += max(0, h - heightMap[x][y])
vis[x][y] = True
heappush(pq, (max(h, heightMap[x][y]), x, y))
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| class Solution {
public int trapRainWater(int[][] heightMap) {
int m = heightMap.length, n = heightMap[0].length;
boolean[][] vis = new boolean[m][n];
PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> a[0] - b[0]);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
pq.offer(new int[] {heightMap[i][j], i, j});
vis[i][j] = true;
}
}
}
int ans = 0;
int[] dirs = {-1, 0, 1, 0, -1};
while (!pq.isEmpty()) {
var p = pq.poll();
for (int k = 0; k < 4; ++k) {
int x = p[1] + dirs[k], y = p[2] + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y]) {
ans += Math.max(0, p[0] - heightMap[x][y]);
vis[x][y] = true;
pq.offer(new int[] {Math.max(p[0], heightMap[x][y]), x, y});
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| class Solution {
public:
int trapRainWater(vector<vector<int>>& heightMap) {
using tii = tuple<int, int, int>;
priority_queue<tii, vector<tii>, greater<tii>> pq;
int m = heightMap.size(), n = heightMap[0].size();
bool vis[m][n];
memset(vis, 0, sizeof vis);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i == 0 || i == m - 1 || j == 0 || j == n - 1) {
pq.emplace(heightMap[i][j], i, j);
vis[i][j] = true;
}
}
}
int ans = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
while (!pq.empty()) {
auto [h, i, j] = pq.top();
pq.pop();
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && !vis[x][y]) {
ans += max(0, h - heightMap[x][y]);
vis[x][y] = true;
pq.emplace(max(heightMap[x][y], h), x, y);
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
| func trapRainWater(heightMap [][]int) (ans int) {
m, n := len(heightMap), len(heightMap[0])
pq := hp{}
vis := make([][]bool, m)
for i, row := range heightMap {
vis[i] = make([]bool, n)
for j, v := range row {
if i == 0 || i == m-1 || j == 0 || j == n-1 {
heap.Push(&pq, tuple{v, i, j})
vis[i][j] = true
}
}
}
dirs := []int{-1, 0, 1, 0, -1}
for len(pq) > 0 {
p := heap.Pop(&pq).(tuple)
for k := 0; k < 4; k++ {
x, y := p.i+dirs[k], p.j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] {
ans += max(0, p.v-heightMap[x][y])
vis[x][y] = true
heap.Push(&pq, tuple{max(p.v, heightMap[x][y]), x, y})
}
}
}
return
}
type tuple struct{ v, i, j int }
type hp []tuple
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].v < h[j].v }
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any) { *h = append(*h, v.(tuple)) }
func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
|