Description#
Given an array of integers nums
and an integer target
, return indices of the two numbers such that they add up to target
.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
You can return the answer in any order.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
Constraints:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
- Only one valid answer exists.
Follow-up: Can you come up with an algorithm that is less than
O(n2)
time complexity?
Solutions#
Solution 1: Hash Table#
We can use the hash table $m$ to store the array value and the corresponding subscript.
Traverse the array nums
, when you find target - nums[i]
in the hash table, it means that the target value is found, and the index of target - nums[i]
and $i$ are returned.
The time complexity is $O(n)$ and the space complexity is $O(n)$. Where $n$ is the length of the array nums
.
1
2
3
4
5
6
7
8
| class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
m = {}
for i, x in enumerate(nums):
y = target - x
if y in m:
return [m[y], i]
m[x] = i
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> m = new HashMap<>();
for (int i = 0;; ++i) {
int x = nums[i];
int y = target - x;
if (m.containsKey(y)) {
return new int[] {m.get(y), i};
}
m.put(x, i);
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> m;
for (int i = 0;; ++i) {
int x = nums[i];
int y = target - x;
if (m.count(y)) {
return {m[y], i};
}
m[x] = i;
}
}
};
|
1
2
3
4
5
6
7
8
9
10
11
| func twoSum(nums []int, target int) []int {
m := map[int]int{}
for i := 0; ; i++ {
x := nums[i]
y := target - x
if j, ok := m[y]; ok {
return []int{j, i}
}
m[x] = i
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function twoSum(nums: number[], target: number): number[] {
const m: Map<number, number> = new Map();
for (let i = 0; ; ++i) {
const x = nums[i];
const y = target - x;
if (m.has(y)) {
return [m.get(y)!, i];
}
m.set(x, i);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| use std::collections::HashMap;
impl Solution {
pub fn two_sum(nums: Vec<i32>, target: i32) -> Vec<i32> {
let mut map = HashMap::new();
for (i, item) in nums.iter().enumerate() {
if map.contains_key(item) {
return vec![i as i32, map[item]];
} else {
let x = target - nums[i];
map.insert(x, i as i32);
}
}
unreachable!()
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| /**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var twoSum = function (nums, target) {
const m = new Map();
for (let i = 0; ; ++i) {
const x = nums[i];
const y = target - x;
if (m.has(y)) {
return [m.get(y), i];
}
m.set(x, i);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| public class Solution {
public int[] TwoSum(int[] nums, int target) {
var m = new Dictionary<int, int>();
for (int i = 0, j; ; ++i) {
int x = nums[i];
int y = target - x;
if (m.TryGetValue(y, out j)) {
return new [] {j, i};
}
if (!m.ContainsKey(x)) {
m.Add(x, i);
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
/**
* @param Integer[] $nums
* @param Integer $target
* @return Integer[]
*/
function twoSum($nums, $target) {
foreach ($nums as $key => $x) {
$y = $target - $x;
if (isset($hashtable[$y])) {
return [$hashtable[$y], $key];
}
$hashtable[$x] = $key;
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| import scala.collection.mutable
object Solution {
def twoSum(nums: Array[Int], target: Int): Array[Int] = {
var map = new mutable.HashMap[Int, Int]()
for (i <- 0 to nums.length) {
if (map.contains(target - nums(i))) {
return Array(map(target - nums(i)), i)
} else {
map += (nums(i) -> i)
}
}
Array(0, 0)
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
func twoSum(_ nums: [Int], _ target: Int) -> [Int] {
var m = [Int: Int]()
var i = 0
while true {
let x = nums[i]
let y = target - nums[i]
if let j = m[target - nums[i]] {
return [j, i]
}
m[nums[i]] = i
i += 1
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
| # @param {Integer[]} nums
# @param {Integer} target
# @return {Integer[]}
def two_sum(nums, target)
nums.each_with_index do |x, idx|
if nums.include? target - x
return [idx, nums.index(target - x)] if nums.index(target - x) != idx
end
next
end
end
|
1
2
3
4
5
6
7
8
9
10
11
12
| import std/enumerate
proc twoSum(nums: seq[int], target: int): seq[int] =
var
bal: int
tdx: int
for idx, val in enumerate(nums):
bal = target - val
if bal in nums:
tdx = nums.find(bal)
if idx != tdx:
return @[idx, tdx]
|