Description#
Given an array nums
of integers and integer k
, return the maximum sum
such that there exists i < j
with nums[i] + nums[j] = sum
and sum < k
. If no i
, j
exist satisfying this equation, return -1
.
Example 1:
Input: nums = [34,23,1,24,75,33,54,8], k = 60
Output: 58
Explanation: We can use 34 and 24 to sum 58 which is less than 60.
Example 2:
Input: nums = [10,20,30], k = 15
Output: -1
Explanation: In this case it is not possible to get a pair sum less that 15.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 1000
1 <= k <= 2000
Solutions#
Solution 1: Sorting + Binary Search#
We can first sort the array $nums$, and initialize the answer as $-1$.
Next, we enumerate each element $nums[i]$ in the array, and find the maximum $nums[j]$ in the array that satisfies $nums[j] + nums[i] < k$. Here, we can use binary search to speed up the search process. If we find such a $nums[j]$, then we can update the answer, i.e., $ans = \max(ans, nums[i] + nums[j])$.
After the enumeration ends, return the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $nums$.
1
2
3
4
5
6
7
8
9
| class Solution:
def twoSumLessThanK(self, nums: List[int], k: int) -> int:
nums.sort()
ans = -1
for i, x in enumerate(nums):
j = bisect_left(nums, k - x, lo=i + 1) - 1
if i < j:
ans = max(ans, x + nums[j])
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| class Solution {
public int twoSumLessThanK(int[] nums, int k) {
Arrays.sort(nums);
int ans = -1;
int n = nums.length;
for (int i = 0; i < n; ++i) {
int j = search(nums, k - nums[i], i + 1, n) - 1;
if (i < j) {
ans = Math.max(ans, nums[i] + nums[j]);
}
}
return ans;
}
private int search(int[] nums, int x, int l, int r) {
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public:
int twoSumLessThanK(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int ans = -1, n = nums.size();
for (int i = 0; i < n; ++i) {
int j = lower_bound(nums.begin() + i + 1, nums.end(), k - nums[i]) - nums.begin() - 1;
if (i < j) {
ans = max(ans, nums[i] + nums[j]);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
| func twoSumLessThanK(nums []int, k int) int {
sort.Ints(nums)
ans := -1
for i, x := range nums {
j := sort.SearchInts(nums[i+1:], k-x) + i
if v := nums[i] + nums[j]; i < j && ans < v {
ans = v
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function twoSumLessThanK(nums: number[], k: number): number {
nums.sort((a, b) => a - b);
let ans = -1;
for (let i = 0, j = nums.length - 1; i < j; ) {
const s = nums[i] + nums[j];
if (s < k) {
ans = Math.max(ans, s);
++i;
} else {
--j;
}
}
return ans;
}
|
Solution 2: Sorting + Two Pointers#
Similar to Solution 1, we can first sort the array $nums$, and initialize the answer as $-1$.
Next, we use two pointers $i$ and $j$ to point to the left and right ends of the array, respectively. Each time we judge whether $s = nums[i] + nums[j]$ is less than $k$. If it is less than $k$, then we can update the answer, i.e., $ans = \max(ans, s)$, and move $i$ one step to the right, otherwise move $j$ one step to the left.
After the enumeration ends, return the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $nums$.
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution:
def twoSumLessThanK(self, nums: List[int], k: int) -> int:
nums.sort()
i, j = 0, len(nums) - 1
ans = -1
while i < j:
if (s := nums[i] + nums[j]) < k:
ans = max(ans, s)
i += 1
else:
j -= 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public int twoSumLessThanK(int[] nums, int k) {
Arrays.sort(nums);
int ans = -1;
for (int i = 0, j = nums.length - 1; i < j;) {
int s = nums[i] + nums[j];
if (s < k) {
ans = Math.max(ans, s);
++i;
} else {
--j;
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
public:
int twoSumLessThanK(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
int ans = -1;
for (int i = 0, j = nums.size() - 1; i < j;) {
int s = nums[i] + nums[j];
if (s < k) {
ans = max(ans, s);
++i;
} else {
--j;
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| func twoSumLessThanK(nums []int, k int) int {
sort.Ints(nums)
ans := -1
for i, j := 0, len(nums)-1; i < j; {
if s := nums[i] + nums[j]; s < k {
ans = max(ans, s)
i++
} else {
j--
}
}
return ans
}
|